
Annals of Mathematics and Artificial Intelligence 0 (2001) ?–? 1

On the Efficiency of Noise-Tolerant PAC Algorithms

Derived from Statistical Queries

Jeffrey Jackson ∗

Math. & Comp. Science Dept., Duquesne University, Pittsburgh, PA 15282-1754

E-mail: jackson@mathcs.duq.edu

The Statistical Query (SQ) model provides an elegant means for generating noise-

tolerant PAC learning algorithms that run in time inverse polynomial in the noise

rate. Whether or not there is an SQ algorithm for every noise-tolerant PAC algo-

rithm that is efficient in this sense remains an open question. However, we show that

PAC algorithms derived from the Statistical Query model are not always the most

efficient possible. Specifically, we give a general definition of SQ-based algorithm and

show that there is a subclass of parity functions for which there is an efficient PAC

algorithm requiring asymptotically less running time than any SQ-based algorithm.

While it turns out that this result can be derived fairly easily by combining a recent

algorithm of Blum, Kalai, and Wasserman with an older lower bound, we also pro-

vide alternate, Fourier-based approaches to both the upper and lower bounds that

strengthen the results in various ways. The lower bound in particular is stronger

than might be expected, and the amortized technique used in deriving this bound

may be of independent interest.

Keywords: PAC learning, Statistical Query model, Fourier analysis

AMS Subject classification: Primary 68Q32; Secondary 68T05

1. Introduction

Kearns’s Statistical Query (SQ) model [10] is a well-studied, elegant abstrac-

tion from Valiant’s foundational Probably Approximately Correct (PAC) learning

model [14]. In the PAC model, a learning algorithm is given access (through a

so-called oracle) to examples of an unknown function f , generally assumed to be

∗ This material is based upon work supported by the National Science Foundation under Grants

No. CCR-9800029 and CCR-9877079. A preliminary version of this material appeared in the

Proceedings of the Thirteenth Annual Conference on Computational Learning Theory.

2 Jackson / PAC Algorithms Derived from Statistical Queries

Boolean. Each example consists of a vector of attribute values—assumed Boolean

throughout this paper, but not in the general PAC model—and the value of f

for the specified attribute values. The goal of the learning algorithm is to, with

high probability, produce a function h that closely approximates f on examples

“similar” to those given to the learning algorithm. A rigorous definition of a

particular PAC learning problem is given in the next section, but suffice it to

say for now that it is generally accepted that the PAC model is a reasonably

good mathematical model of many of the sorts of supervised classification learn-

ing problems often studied by machine learning empiricists. For example, some

positive results obtained in the PAC model, most notably hypothesis boosting

[13,7], have had a substantial impact on machine learning practice.

In Kearns’s Statistical Query model, instead of having access directly to

examples of the unknown function f , the learning algorithm is given access to an

oracle that provides estimates of various “statistics” about the unknown function.

Again, a formal definition is given in the next section, but for now we note that

unlike the PAC example oracle, the SQ oracle does not directly correspond to

anything readily available in the real world. However, Kearns showed that any

function class efficiently learnable in the SQ model is also learnable in the PAC

model despite noise uniformly applied to the class labels of the examples. What

makes this result particularly interesting from an applications point of view is

that the proof essentially outlines a generic method that can be used to simulate

an SQ algorithm using a noisy PAC example oracle (a “noisy” oracle is one that

mislabels each example with a fixed probability). The PAC algorithm resulting

from the SQ simulation runs in time at most polynomially greater than the time

required of an SQ algorithm using an SQ oracle, and also inverse polynomially in

the noise probability. Thus, if an efficient SQ learning algorithm can be developed

for a learning problem, an efficient noise-tolerant PAC algorithm can also be

immediately derived for this problem.

In the same paper where Kearns showed that SQ learnability implies noise-

tolerant PAC learnability, he developed SQ algorithms for almost all function

classes known to be efficiently learnable in the PAC model. By doing this, he

provided the first known noise-tolerant PAC algorithms for some of these classes.

In fact, the SQ approach to developing noise-tolerant PAC algorithms was so

successful that Kearns asked whether or not the SQ and PAC+noise models

might be equivalent [10]. That is, is it possible that every class of functions

that is efficiently learnable from a noisy PAC example oracle is also efficiently

Jackson / PAC Algorithms Derived from Statistical Queries 3

learnable from an SQ oracle? If so, this would mean that hardness results for

learnability in the SQ model [2] would imply hardness in the PAC with noise

model. It might also seem to imply that all future searching for noise-tolerant

PAC algorithms should focus exclusively on finding SQ algorithms from which

PAC algorithms could then be derived.

However, Blum, Kalai, and Wasserman [3] have recently shown that in some

sense the PAC+noise and SQ models are different. Specifically, they show that

there is a class that is in some sense efficiently PAC learnable with noise but not

efficiently SQ learnable. However, they only show that this class can be learned

efficiently when the noise rate is constant. That is, the time required by their

algorithm is not polynomial in the inverse of the noise rate. This leaves open the

question of whether or not there is an efficient SQ algorithm for every function

class that is learnable in time inverse polynomial in the noise rate.

Like Blum et al., this paper does not answer this intriguing question. How-

ever, we do show that using the SQ model to develop (inverse-polynomial) noise-

tolerant PAC algorithms sometimes does not produce optimally efficient algo-

rithms. Specifically, a formal definition of SQ-based PAC algorithms is developed.

Informally, SQ-based algorithms are PAC algorithms that are derived through a

generic process from SQ algorithms. This process is even generous to the SQ-

based algorithm in that it assumes that the target function is noiseless and also

assumes that an appropriate sample size for simulating each statistical query

does not need to be computed but is instead known by the algorithm. Despite

the generosity of this definition, we show that there is an efficient (in inverse noise

rate as well as other standard learning parameters) PAC algorithm for the class

of all parity functions on the first O(log n) bits of an n-bit input space, and that

this algorithm is more efficient than any SQ-based algorithm for this class.

We actually present several somewhat different approaches to this result.

First, while the Blum et al. results [3] focus on producing a superpolynomial

separation between PAC+noise and SQ learning in the constant noise setting,

they have in fact developed a family of parameterized algorithms that can be used

to derive a variety of learnability results. In particular, some members of this

family of algorithms efficiently tolerate inverse-polynomial noise rates for certain

function classes. Given our definition of an SQ-based algorithm, it is relatively

easy to combine these Blum, Kalai, and Wasserman algorithms with a lower

bound from an older Blum et al. paper [2] to give a polynomial separation between

SQ-based algorithms and inverse-polynomial noise-tolerant PAC algorithms when

4 Jackson / PAC Algorithms Derived from Statistical Queries

learning the O(log n) subclass of parity functions with respect to the uniform

distribution over the n-bit input space (that is, for both training and testing

purposes, the attribute values of examples are assigned uniformly at random).

We then improve on the lower bound. Specifically, a time bound of Ω(2n/2)

for SQ-based learning of the class of parity functions over n bits that can be

derived in a fairly straightforward way from [2], but improving on this seems to

require deeper analysis. We improve this bound to Ω(2n) using an amortized

analysis approach that may also be useful in other settings.

Finally, we show that an algorithm based on the well-studied Goldreich-

Levin parity-learning algorithm [8,11], which on the surface is quite different from

the algorithm of Blum, Kalai, and Wasserman, achieves running time sufficient

to also give a polynomial separation result between noisy PAC learning and SQ-

based learning. The Goldreich-Levin algorithm was initially designed to allow

the algorithm to select its own examples (that is, to use membership queries)

rather than being restricted to examples provided by an oracle. The fact that

Goldreich-Levin can be used without membership queries in this way is somewhat

interesting in itself. Furthermore, the Goldreich-Levin algorithm appears to be

resistant to much broader forms of noise than the Blum et al. algorithm, thus

strengthening the separation between SQ and PAC+noise.

The mathematical analysis underlying these results depends heavily on dis-

crete Fourier techniques, specifically properties of the Walsh transform. Fourier

analysis was first used to analyze machine learning questions by Linial, Mansour,

and Nisan [12]. Even this first application produced a very substantial result,

showing that the class of functions that can be represented by polynomial-size,

constant-depth Boolean circuits is learnable in time quasi-polynomial in the in-

put size n. Several other substantial Fourier-based results have been obtained

since then (e.g., [11,2,9,5]) as well as a number of smaller results, although several

of the algorithms derived require the use of membership queries, limiting their

practical application. As already noted, the results in this paper do not have this

limitation.

The remainder of this paper is organized as follows. First, formal definitions

of specific learning problems in the PAC and SQ models are given, along with

definitions of the Fourier (Walsh) transform and statements of some standard

Fourier results. Next, an initial separation between the PAC+noise and SQ-

based learning models is presented by combining PAC learning results from Blum,

Kalai, and Wasserman [3] with earlier Blum et al. lower bound SQ results [2].

Jackson / PAC Algorithms Derived from Statistical Queries 5

Next, the lower bound on SQ-based learning is improved by directly analyzing

sample complexity rather than relying on the number of statistical queries as

a lower bound on run time. Finally, an alternative to the Blum, Kalai, and

Wasserman PAC learning algorithm is presented, giving a somewhat more noise-

tolerant algorithm for the upper bound.

2. Preliminaries

This paper focuses on the learnability of the class of parity functions in

various learning models. Following standard Fourier learning theory notation, we

use χa : {0, 1}n → {−1, +1} to represent the parity function defined as follows:

χa(x) = (−1)a·x

where a · x represents the dot product of the n-bit Boolean vectors a and x.

We define the class of parity functions on n bits PARn = {f | f = χa or f =

−χa, a ∈ {0, 1}n} and the class of parity functions PAR = ∪∞
n=0PARn.

The two models of learnability we will focus on are both variants of Valiant’s

Probably Approximately Correct (PAC) model [14]. The first question we con-

sider is the PAC uniform random classification-noise learnability of PAR with

respect to the uniform distribution. In this model, the learning algorithm A is

given access to a noisy example oracle EXη(f, Un). Here η is the noise rate

of the oracle (assumed known, although knowing a lower bound suffices for all

of our results), f is a fixed unknown parity function in PARn for some value

of n, and Un represents the uniform distribution over {0, 1}n. On each draw

from the oracle, a vector x ∈ {0, 1}n is drawn uniformly at random. The oracle

then randomly chooses between returning the noiseless example 〈x, f(x)〉, with

probability 1 − η, and returning the noisy example 〈x,−f(x)〉, with probability

η. A is also given parameters ε, δ > 0. The goal of the learner is to produce

a function h : {0, 1}n → {−1, +1} such that, with probability at least 1 − δ,

Prx∼Un [f(x) 6= h(x)] ≤ ε. Such an h is called an ε-approximator to f with

respect to the uniform distribution.

The second question considered is the Statistical Query learnability of PAR.

A uniform-distribution Statistical Query (SQ) oracle— denoted SQ(g, τ)—is an

oracle for an unknown target function f : {0, 1}n → {0, 1}. Given a function

g : {0, 1}n+1 → {−1, +1} and a tolerance τ ≥ 0, SQ(g, τ) returns a value µ̃

such that |Ex∼Un [g(x, f(x))] − µ̃| ≤ τ , where Ex∼Un [·] represents expected value

6 Jackson / PAC Algorithms Derived from Statistical Queries

with respect to the uniform distribution over {0, 1}n. A Boolean function class

C is uniform-distribution learnable in the Statistical Query model (SQ-learnable)

if there is an algorithm A that, given any ε > 0 and access to an SQ oracle

for any function f ∈ C, produces a function h : {0, 1}n → {0, 1} such that

Prx∼Un [f(x) 6= h(x)] ≤ ε. In this paper we consider only the original additive

error version of statistical queries and not the relative error model, which is in

some sense polynomially equivalent [1].

These definitions can be generalized to arbitrary probability distributions

rather than Un in an obvious way. However, in this paper, our focus is on the

uniform distribution. In the sequel, probabilities and expectations that do not

specify a distribution are over the uniform distribution on {0, 1}n for a value of

n that will be obvious from context.

We will also make use of an algorithm that uses queries to a membership

oracle in order to weakly learn certain function classes with respect to the uni-

form distribution. A membership oracle for f : {0, 1}n → {−1, +1} (MEM(f))

is an oracle that given any n-bit vector x returns the value f(x). A function

h : {0, 1}n → {−1, +1} is a weak approximation with respect to the uniform dis-

tribution to a function f : {0, 1}n → {−1, +1} if Prx∼Un [f(x) = h(x)] ≥ 1
2 + θ,

where θ is inverse polynomial in parameters appropriate for the learning problem

considered (the specific parameters will not be important for our purposes). A

uniform-distribution learning algorithm for a class A that produces weak approx-

imators as hypotheses—rather than ε-approximators as in the models above—is

said to weakly learn A. Learning algorithms that produce ε-approximators are

sometimes referred to as strong.

Several of our results will use Fourier analysis. Given a Boolean function f :

{0, 1}n → {−1, +1} and an n-bit vector a, we define the Fourier coefficient with

index a (f̂(a)) to be Ex[f(x) ·χa(x)]. Parseval’s identity for the Fourier transform

is Ex[f2(x)] =
∑

a f̂2(a). For f ∈ {−1, +1}, this gives that
∑

a f̂2(a) = 1.

Notice that if a Fourier coefficient f̂(a) is reasonably large (bounded away

from 0 by an inverse polynomial), then the corresponding parity function χa is a

weak approximator to the function f . To see this, note that

f̂(a) = Ex[f(x)χa(x)]

= Prx[f(x) = χa(x)] − Prx[f(x) 6= χa(x)]

= 2Prx[f(x) = χa(x)] − 1.

Jackson / PAC Algorithms Derived from Statistical Queries 7

Therefore, if |f̂(a)| ≥ γ, then either the parity function χa or its negation is a

((1 − γ)/2)-approximator to f with respect to the uniform distribution. We say

in this case that the parity χa (or its negation) is γ-correlated with f .

3. An initial separation of PAC and SQ-based algorithms

We begin this section by defining our notion of an SQ-based algorithm and

discussing some of the implications of this definition. We then apply results from

Blum et al. [2] and a very simple sample complexity argument to show a lower

bound on the run time of any SQ-based algorithm for PAR. Next, time bounds

on the recent Blum et al. [3] family of algorithms for learning parity are com-

pared with the lower bound in the context of learning parity functions on the first

O(log n) bits of n-bit input vectors. This comparison gives a separation between

SQ-based algorithms and PAC algorithms resistant to inverse-polynomial classi-

fication noise. We then improve on this separation in various ways in subsequent

sections.

3.1. SQ-based algorithms

We begin by formalizing the notion of an SQ-based algorithm that will be

used in the lower bound proofs. The definition in some ways makes overly simple

assumptions about the difficulty of simulating statistical queries, as discussed

further below. However, these simplistic assumptions can be made without loss

of generality for lower bound purposes and will streamline our later analysis.

Definition 1. An algorithm A is SQ-based if it is a PAC (example oracle) sim-

ulation of an SQ algorithm S. Specifically, A is derived from S by replacing the

ith query (gi, τi) to the SQ oracle with the explicit computation of the sample

mean of gi over mi (noiseless) examples obtained from the example oracle. Given

a confidence δ, the mi’s must be chosen such that with probability at least 1− δ

all of the simulated statistical queries succeed at producing values within τi of

the true expected values. The algorithm A therefore succeeds with probability

at least 1 − δ.

One simplifying assumption made in this definition is that the example

oracle is noiseless, while the later PAC algorithms will be required to deal with

noisy examples. Also notice that the definition does not require the SQ-based

8 Jackson / PAC Algorithms Derived from Statistical Queries

algorithm to compute an appropriate value of mi (which would be necessary in

a typical “real” simulation), but only to use an appropriate number of examples

in its calculations.

Another point worth noting is that this definition does not exclude the

possibility of simulating a number of queries (gi, τi) as a batch rather than se-

quentially. That is, while the definition does require that all of the statistical

queries be simulated, it does not specify the order in which they are simulated,

and does not even preclude the computations for different query simulations be-

ing interleaved. The definition does, however, imply that each query should be

simulated by computing the sum of gi over mi examples (this is the intention of

the term “explicit computation” in the definition). That is, we do not allow any

clever use of computations related to gj to be used in the computation of the

sample mean of gi, i 6= j. This is because our goal is to capture the essence of

a generic simulation of statistical queries, and any cleverness introduced would

presumably be problem-specific rather than generic.

Finally, notice that this definition does allow for the reuse of examples be-

tween simulations of queries i and j, i 6= j. So the sample complexity of an

SQ-based algorithm may be much less than
∑

i mi. However, a key to our lower

bound arguments is to note that the time complexity of an SQ-based algorithm

is (at least) the sum of the times required to simulate all of the queries made by

the algorithm, and therefore is at least
∑

i mi.

3.2. A simple lower bound

We now consider SQ-based learning algorithms for PAR. Our analysis

makes heavy use of Fourier-based ideas from Blum et al. [2], who showed that

any class containing super-polynomially many distinct parity functions cannot be

learned with a polynomial number of statistical queries having polynomial error

tolerance. We will be interested in both the number of queries made and in the

time required to simulate these queries with a (noiseless) PAC example oracle.

3.2.1. SQ learning of PAR

First, consider the SQ learnability with respect to the uniform distribution

of the class PAR of parity functions. Let f : {0, 1}n → {−1, +1} be such a parity

function–call it χb, where b is the n bit vector indicating which of the n input

bits are relevant to χb–and let f ′(x) = (1 − f(x))/2 be the {0, 1}-valued version

Jackson / PAC Algorithms Derived from Statistical Queries 9

of f . A corollary of analysis in Blum et al. [2] then gives that for any function

g : {0, 1}n+1 → {−1, +1},

Ez∼Un [g(z, f ′(z))]

= ĝ(0n+1) +
∑

a∈{0,1}n

ĝ(a1)Ez∼Un [f(z)χa(z)]

where a1 represents the concatenation of the n-bit vector a and the bit 1. Fur-

thermore, it follows by the orthogonality of the Fourier basis functions χa that the

expectation Ez∼Un [f(z)χa(z)] = Ez∼Un [χb(z)χa(z)] is 0 unless a = b, in which

case it is 1. So we have

Ez∼Un [g(z, f ′(z))] = ĝ(0n+1) + ĝ(b1). (1)

This means that if an SQ learning algorithm makes a query (g, τ) and τ ≥ |ĝ(b1)|
then the SQ oracle can return ĝ(0n+1). But by a simple application of Parseval’s

identity, for any fixed function g as above there are at most τ−2 distinct Fourier

coefficients of magnitude at least τ . Thus, a response of ĝ(0n+1) by the SQ oracle

to a query (g, τ) made by the SQ learner allows the learner to eliminate (“cover”)

at most τ−2 parity functions from further consideration (those corresponding to

a’s such that |ĝ(a)| ≥ τ). This leaves at least 2n − τ−2 parity functions, any one

of which might be the target function.

Therefore, if our goal is to find the actual target function and all of our

statistical queries use the same tolerance τ , in the worst case at least 2n/τ2 queries

are required. This also implies that if we were to set the tolerance τ to 2−n/2,

then conceivably we could learn the target parity function in a single statistical

query. So sample complexity alone is not enough for our SQ-based lower bound

argument; we also need to consider the number of examples required to simulate

a query.

3.2.2. SQ-Based Learning of PAR

We can obtain a lower bound on the run time of any SQ-based algorithm

for PAR by combining the above analysis with consideration of the number of

examples needed to simulate a statistical query. Clearly, to simulate a statistical

query (gi, τi) requires mi = Ω(1/τi) examples; fewer than this means that even

the discretization error of the sample mean is larger than τi. Thus, even in the

case of a single statistical query being used with tolerance 2−n/2, an SQ-based

algorithm will require time at least Ω(2n/2). We therefore have

10 Jackson / PAC Algorithms Derived from Statistical Queries

Theorem 2. Let n represent the number of input bits of a function in PAR.

Every SQ-based algorithm requires time Ω(2n/2) to PAC learn the class PAR

with respect to the uniform distribution.

We will improve on this bound in section 4.

3.3. Noise-tolerant PAC algorithms for PAR

Blum, Kalai, and Wasserman [3], as part of their results, prove the following:

Theorem 3 (BKW). Let n represent the number of input bits of a function in

PAR. For any integers a and b such that ab = n, the class PAR can be learned

with respect to the uniform distribution under uniform random classification noise

of rate η in time polynomial in (1 − 2η)−(2a) and 2b as well as the normal PAC

parameters.

While Blum et al. used this theorem to analyze the case in which a is log-

arithmic in n, note that choosing a to be a constant gives us an algorithm with

running time polynomial in the inverse noise rate and O(2n/a) in terms of n. In

particular, choosing a > 2 gives us an algorithm that has better asymptotic per-

formance in n than the best possible SQ-based algorithm for PAR with respect

to uniform. Furthermore, the algorithm’s run time does not depend on the PAC

parameter ε, as it produces a single parity function as its hypothesis, which is

either a 0-approximator to the target f or is not at all correlated with f with

respect to the uniform distribution. And the algorithm can be shown to have run

time logarithmic in terms of 1/δ, as is typical of PAC algorithms.

Given this understanding of the Blum et al. results, we are ready for a formal

comparison of this PAC algorithm with the SQ-based algorithm above.

3.4. Comparing the PAC and SQ-based algorithms

Comparing the bounds in Theorems 3 and 2, it is clear that the carefully

crafted PAC algorithm of Blum et al. with a constant runs in polynomial time

in all parameters on the class of parity functions over the first O(log n) input

bits, and that this algorithm is generally faster than any SQ-based algorithm.

However, the PAC algorithm bound includes the noise rate while our SQ analysis

did not, so the PAC algorithm is not necessarily more efficient regardless of the

noise rate. But note that if the noise term 1/(1− 2η) is polynomially bounded in

Jackson / PAC Algorithms Derived from Statistical Queries 11

n, say is O(nk) for some constant k, then there is a constant c such that the PAC

algorithm on parity over the first c · k bits will be asymptotically more efficient

than any SQ-based algorithm. This polynomial restriction on the noise term is

relatively benign, particularly considering that n is exponentially larger than the

size of the functions being learned. In any case, we have

Theorem 4. For any noise rate η < 1/2 such that 1/(1 − 2η) is bounded by a

fixed polynomial in n, and for any confidence δ > 0 such that 1/δ is bounded by

a fixed exponential in n, there exists a class C of functions and a constant k such

that:

1. C can be PAC learned with respect to the uniform distribution with classifi-

cation noise rate η in time o(nk) for some constant k; and

2. Every SQ-based algorithm for (noiseless) C with respect to the uniform dis-

tribution runs in time Ω(nk).

We now turn to some improvements on this result. First, we show a stronger

lower bound on the running time of SQ-based algorithms for PAR of Ω(2n). We

then show that a different algorithm for PAR that has running time dominated

by 2n/2. In conjunction with the improved lower bound, this algorithm is also

asymptotically faster than any SQ-based algorithm for parity with respect to the

uniform distribution. We also note that this algorithm is robust against noise

other than uniform random classification noise, and so appears to generalize

somewhat the results obtained thus far.

4. A better lower bound on SQ-based algorithms

Our earlier analysis of the number of examples needed to simulate a statis-

tical query was extremely simple, but coarse. Here we give a much more involved

analysis which shows, perhaps somewhat surprisingly, that time fully Ω(2n) is

needed by any SQ-based algorithm to learn PAR. Our approach is to consider

many cases of statistical queries and to show that in every case the number of

parity functions “covered” by query i is O(mi), where mi represents the number

of examples needed to simulate i. Since by our earlier discussion essentially all

2n parity functions must be covered by the algorithm, the overall result follows.

We will need several technical lemmas about the binomial distribution,

which are stated and proved in the Appendix. Given these lemmas, we will

12 Jackson / PAC Algorithms Derived from Statistical Queries

now prove a general lower bound on the sample complexity—and therefore time

complexity—needed to approximate certain random variables.

Lemma 5. Let X be a random variable in {0, 1} such that Pr[X = 1] = p, that

is, a Bernoulli random variable with fixed mean p. Denote the mean value of a

sample of X (of size m to be determined) by X̃. Assume that either or both of

the following conditions hold for the parameters p, m, and λ: 1) 1/3 < p < 2/3

and 0 < λ ≤ 1/9 (no condition on m); 2) m and p satisfy mp(1 − p) > 1 and

0 < λ < p(1−p)/2. Then for any 0 < δ < 0.05, a sample of size m ≥ p(1−p)/(2λ2)

is necessary to achieve Pr[|X̃ − p| ≤ λ] ≥ 1 − δ.

Proof. Let q = 1−p and call an m that guarantees that Pr[|X̃ −p| ≤ λ] ≥ 1− δ

adequate. We will begin by showing that if either of the conditions of the lemma

is met and m is adequate then mpq > 1, which also implies m ≥ 5. To see this,

note that if 1/3 < p < 2/3 and mpq ≤ 1 then m ≤ 9/2. For such small m,

X̃ can take on only a small number of values, and the condition 1) bound on λ

implies that at most one of these values of X̃ can be within λ of fixed p. A simple

case analysis for m = 2, 3, 4 applying Lemma 11 shows that the probability of

occurrence for the pertinent values of X̃ is much less than 0.95, and the case

m = 1 is immediate. Thus if condition 1) is satisfied and m is adequate then it

must be the case that mpq > 1.

Next, note that if the sample is of size m then mX̃, the sum of the random

variables in the sample, has the binomial distribution B(m, p) with mean mp. By

Lemma 9, for p < 1, the maximum value of this distribution occurs at the first

integer greater than p(m+1)−1, and this maximum value is shown in Lemma 13

to be no more than 0.41/
√

mpq − 1 for mpq > 1. Now the probability that mX̃ is

within
√

mpq − 1 of the true mean is just the integral of the distribution B(m, p)

from mp−√
mpq − 1 to mp +

√
mpq − 1. Using the maximum on B(m, p) given

above, this probability is bounded above by 0.82. Therefore, we have that the

probability that |mX̃ − mp| >
√

mpq − 1 is at least 0.18. In other words,

Pr

[

|X̃ − p| >

√
mpq − 1

m

]

> 0.05.

So if either of the lemma’s conditions is satisfied, then an adequate m must be

such that
√

mpq − 1/m ≤ λ. This inequality is satisfied by all m if λ ≥ pq/2, but

it is easily seen that this relationship between λ and p is not possible is either of

Jackson / PAC Algorithms Derived from Statistical Queries 13

the conditions of the lemma holds. So solving this inequality, we see that it holds

if either

m ≤ pq −
√

p2q2 − 4λ2

2λ2

or

m ≥ pq +
√

p2q2 − 4λ2

2λ2
.

We will next show that no m satisfying the first of these inequalities is adequate,

completing the proof.

Since we can assume that λ ≤ pq/2, it follows that m ≤ (pq −
√

p2q2 − 4λ2)/(2λ2) implies m ≤ 1/λ. Now if m ≤ 1/λ, since X̃ is an inte-

ger divided by m, there are at most two values of X̃ that differ from p by no

more than λ. But since we know that mpq > 1, Lemma 13 gives that the max-

imum probability of any one value of the binomial distribution—and thus the

maximum probability of any one value of X̃ occurring—is at most 0.46. Thus

the maximum probability on two values of X̃ is at most 0.92, and a value of m

less than (pq −
√

p2q2 − 4λ2)/(2λ2) cannot be adequate.

With these lemmas in hand, we are ready to prove the main theorem of this

section.

Theorem 6. Every SQ-based algorithm requires time Ω(2n) to PAC learn the

class PAR of parity functions with respect to the uniform distribution.

Proof. We begin by considering the SQ algorithm S that will be used to learn

PAR, formalizing some of the earlier discussion. The algorithm must produce a

good approximator h to the (noiseless) target—call it χb—which is one of the 2n

parity functions. By standard Fourier analysis based on Parseval’s identity, if h

is such that Pr[h = χb] ≥ 7/8 then h cannot have a similar level of correlation

with any other parity function. Specifically, recall that ĥ(b) = 2Pr[h = χb] − 1,

and therefore ĥ(b) ≥ 3/4 if Pr[h = χb] ≥ 7/8. Since
∑

a ĥ2(a) = 1 by Parseval’s

identity, we have that
∑

a6=b ĥ2(a) ≤ 7/16, and therefore the maximal value for

ĥ(a) for any a 6= b is less than 3/4. Therefore, choosing ε < 1/8 forces the SQ

learning algorithm to produce a hypothesis that is well correlated with a single

parity function.

14 Jackson / PAC Algorithms Derived from Statistical Queries

Now as indicated above, each SQ query g of tolerance τ will either get a

response that differs by at least τ from ĝ(0n+1) or one that does not. We will call

the former response informative and the latter uninformative. Also recall that

each uninformative query SQ(g, τ) eliminates at most τ−2 parity functions from

further consideration as possible targets.

Based on (1) and the subsequent analysis of statistical queries on PAR,

we know that in the worst case a statistical query differs by more than τi from

ĝi(0n+1) only if |ĝi(b1)| > τi, where χb is the target parity. Thus we define the

(worst-case) coverage Ci of a query SQ(gi, τi) to be Ci = {a | |ĝi(a1)| > τi}. Any

SQ algorithm for the parity problem must in the worst case make queries that

collectively cover all but one of the set of 2n parity functions in order to with

probability 1 successfully find a good approximator for ε < 1/8. That is, in the

worst case | ∪i Ci| = Ω(2n). Also note that in the worst case only the last of the

covering queries—and possibly not even that one—will be informative.

Thus the SQ algorithm S can be viewed as at each step i choosing to make

the query SQ(gi, τi) in order to cover a certain set Ci of coefficients. That is, S
first decides on the set Ci to be covered and then chooses gi and τi in order to

cover this set. We will assume without loss of generality that the SQ algorithm

chooses τi for each query such that

τi = min
{

|ĝi(a1)| | a ∈ Ci − ∪i−1
j=1Cj

}

.

That is, each τi is chosen to optimally cover its portion Ci of the function space.

This change makes no difference in the total coverage after each query, and it will

be seen below that it can only improve the run-time performance of the SQ-based

algorithm.

Our goal now is to show that the time required by any SQ-based algorithm

to simulate the queries made by any SQ algorithm for parity with respect to

the uniform distribution is Ω(2n). The analysis is similar in spirit to that of

amortized cost: we show that each query SQ(gi, τi) simulated by the SQ-based

algorithm must “pay” an amount of running time proportionate to the coverage

|Ci|.
We consider two different cases based on the nature of the queries made by

the SQ algorithm. Let

p = Ex

[

g(x, f(x)) + 1

2

]

,

Jackson / PAC Algorithms Derived from Statistical Queries 15

where f is the {0, 1} version of the target χb, so that p is the mean of a {0, 1}-
random variable. Then if the query g and target f are such that 1/3 < p < 2/3,

by Lemma 5 (or trivially, if τ is bounded by a large constant so that Lemma 5

does not apply) we need an estimate of the mean value of p over a sample of

size Ω(1/τ2) in order to have high confidence that our estimate is within τ/2 of

the true mean (note that estimating p to within τ/2 is equivalent to estimating

Ex[g(x, f(x))] to within τ). And of course the estimate must be within τ/2 if the

algorithm is to decide whether or not the response to the query is informative.

In other words, for queries satisfying the condition on p for this case, our SQ-

based algorithm must pay a time cost of Ω(1/τ 2). As already noted earlier, by

Parseval’s identity at most 1/τ 2 parity functions will be covered by a query with

tolerance τ . Therefore, in this case, the running time of the SQ-based algorithm

is proportionate to the coverage achieved.

On the other hand, assume without loss of generality that the SQ algorithm

makes a query SQ(g, τ) such that p < 1/3 (the p > 2/3 case is symmetric). By

(1) this implies that either the magnitude of ĝ(0n+1) or of ĝ(b1), or both, is larger

than a constant. This in turn implies by Parseval’s identity that there can be

fewer additional “heavy” coefficients in g. In other words, even though we may

be able to simulate the query SQ(g, τ) with a sample smaller than τ 2, we will

also be covering fewer coefficients than we could if ĝ(0n+1) and ĝ(b1) were both

small.

We formalize this intuition by again considering several cases. First, again

given that the target parity is χb, note that

p =
ĝ(0n+1) + ĝ(b1) + 1

2
.

We may assume that |ĝ(b1)| ≤ τ . This is certainly true if the query is uninforma-

tive, and it is true in the worst case for an informative query by our assumption

about τ earlier. This then gives that ĝ(0n+1) ≤ 2p−1+τ . Taking C to represent

the coverage of SQ(g, τ), Parseval’s identity gives that

|C| ≤ 1 − ĝ2(0n+1)

τ2
.

Now because p < 1/3, τ would need to be at least 1/3 in order for 2p− 1+ τ ≥ 0

to hold. But in this case only at most 9 coefficients can be covered, obviously

with at least constant run-time cost. So we consider the case 2p−1+τ < 0. This

16 Jackson / PAC Algorithms Derived from Statistical Queries

implies that ĝ2(0n+1) ≥ (2p − 1 + τ)2, and after some algebra and simplification

gives

|C| ≤ 4pq

τ2
+

2

τ
,

where q = 1 − p.

To convert this to a bound in terms of m, we consider two cases for the value

of mpq. First, consider the case in which m is chosen such that mpq < 1, and

assume for sake of contradiction that also m < 1/(2τ). Such a small m implies

again that at most one of the possible values of the sample mean X̃ will be within

τ of the true mean p. Furthermore, since q > 2/3, mp < 3/2, and it is easy to see

from Lemma 9 that the sum mX̃ attains its maximum probability at either the

value 0 or the value 1. Consider first the case where m and p are such that the

maximum is at 1. The probability of drawing m consecutive 0’s from a Bernoulli

distribution with mean p is (1 − p)m ≥ 10
11e−mp (this form of the bound comes

from [6]). Since m ≤ 3/(2p), this means that the probability of seeing all 0’s is

over 0.2. Thus the probability that mX̃ = 1 is less than 0.8, so a larger m would

be required in order for the sample mean to be within τ of the true mean with

more than constant probability. If instead m and p are such that the maximum

of the binomial is at 0, it must be that mp < 1. We consider a Bernoulli random

variable with mean p + τ . If m examples are chosen from this random variable

then with probability at least 10
11e−m(p+τ) all m examples are 0’s. This quantity

is again over 0.2 if m < 1/(2τ). Thus we would need many more examples than

1/(2τ) in order to have better than constant confidence that our sample came

from a distribution with mean p rather than one with mean p + τ .

We conclude from this that if p < 1/3 and mpq < 1 then it must be that

m > 1/(2τ) in order for the PAC algorithm’s sampling to succeed with sufficiently

high probability. Thus we get that in this case,

|C| ≤ 4pq

τ2
+

2

τ
≤ 4

mτ2
+ 4m ≤ 20m.

Therefore, once again the coverage is proportional to the sample size used.

Finally, if p < 1/3 and mpq ≥ 1 then we consider two last cases. First, if

τ ≥ pq then 4pq/τ 2 ≤ 4/τ and also 1/τ ≤ m. Therefore, in this case, |C| ≤ 6m.

On the other hand, if p < 1/3, mpq ≥ 1, and τ < pq then we can apply Lemma 5

with λ = τ/2. This gives that m ≥ 2pq/τ 2, and combining this with mpq ≥ 1

Jackson / PAC Algorithms Derived from Statistical Queries 17

implies that m ≥
√

2/τ . Combining these bounds gives

|C| ≤ 4pq

τ2
+

2

τ
≤ (2 +

√
2)m.

So in all cases run time is proportional to the coverage |C|, and the total

coverage | ∪i Ci| has already been shown to be Ω(2n) in the worst case.

5. A more robust noise-tolerant PAC algorithm for PAR

In this section we present another noise-tolerant PAC algorithm for learning

the class PAR of parity functions with respect to the uniform distribution. While

the algorithm’s running time is O(2n/2) in terms of n, by the lower bound on

SQ-based algorithms of the previous section and an analysis similar to that of

Theorem 4, the algorithm can be shown to be asymptotically faster than any

SQ-based algorithm for this problem. Furthermore, the algorithm can be shown

to be tolerant of a wide range of noise, not just uniform random classification

noise.

Our algorithm is based on one by Goldreich and Levin [8] that uses mem-

bership queries. We first review the Goldreich-Levin algorithm and then show

how to remove the need for membership queries when large samples are available.

5.1. Goldreich-Levin weak parity algorithm

A version of the Goldreich-Levin algorithm [8] is presented in Figure 1.

The algorithm is given a membership oracle MEM(f) for a target function f :

{0, 1}n → {−1, +1} along with a threshold θ and a confidence δ. Conceptually,

the algorithm begins by testing to see the extent to which the first bit is or is

not relevant to f . A bit is particularly relevant if it is frequently the case that

two input vectors that differ only in this bit produce different values of f . The

function call

WP-aux(1, 0, n, MEM(f), θ, δ)

will, with high probability, return the empty set if the first bit is particularly

relevant. To see this, notice that if the first bit is very relevant, then with high

probability over uniform choice of (n − 1)-bit x and 1-bit y and z,

f(yx)f(zx)χ0(y ⊕ z) = f(yx)f(zx)

18 Jackson / PAC Algorithms Derived from Statistical Queries

Invocation: S ← WP(n, MEM(f), θ, δ)

Input: Number n of inputs to function f : {0, 1}n → {−1, +1}; membership

oracle MEM(f); 0 < θ ≤ 1; δ > 0

Output: Set S of n-bit vectors such that, with probability at least 1 − δ, every

a such that |f̂(a)| ≥ θ is in S, and for every a ∈ S, |f̂(a)| ≥ θ/
√

2.

1. return WP-aux(1, 0, n, MEM(f), θ, δ) ∪ WP-aux(1, 1, n, MEM(f), θ, δ)

Invocation: S ← WP-aux(k, b, n, MEM(f), θ, δ)

Input: Integer k ∈ [1, n]; k-bit vector b; number n of inputs to function f :

{0, 1}n → {−1, +1}; membership oracle MEM(f); 0 < θ ≤ 1; δ > 0

Output: Set S of n-bit vectors such that, with probability at least 1 − δ, for

every a such that the first k bits of a match input vector b and |f̂(a)| ≥ θ, a is in

S, and for every a ∈ S, |f̂(a)| ≥ θ/
√

2.

1. s ← 0; m ← 32θ−4 ln(4n/δθ2)

2. for m times do

3. Draw x ∈ {0, 1}n−k, y, z ∈ {0, 1}k uniformly at random.

4. s ← s + f(yx)f(zx)χb(y ⊕ z)

5. enddo

6. µ′ ← s/m

7. if µ′ < 3θ2/4 then

8. return ∅
9. else if k = n then

10. return {b}
11. else

12. return WP-aux(k + 1, b0, n, MEM(f), θ, δ) ∪ WP-aux(k +

1, b1, n, MEM(f), θ, δ)

13. endif

Figure 1. The WP weak-parity algorithm.

will be very small. This is because with probability 1
2 y = z and with probability

1
2 y 6= z, and when y 6= z the high relevance of the first bit implies that frequently

f(yx) 6= f(zx). Thus approximately half the time we expect that the product

is 1 and half −1, giving an expected value near 0. As the loop in WP-aux is

estimating this expected value, we expect that the condition at line 7 will typically

be satisfied.

Jackson / PAC Algorithms Derived from Statistical Queries 19

On the other hand, consider the function

WP-aux(1, 1, n, MEM(f), θ, δ).

Now the loop in WP-aux is estimating the expected value of

f(yx)f(zx)χ1(y ⊕ z).

Since χ1(y ⊕ z) is 1 when y = z and −1 otherwise, we now expect a value for

µ′ very near 1. Thus, in the situation where the first bit is highly relevant, we

expect that every Fourier index a in the set S returned by WP will begin with

a 1. To determine exactly what these coefficients are, the WP-aux function calls

itself recursively, this time fixing the first two bits of the subset of coefficients

considered to either 10 or 11.

Thus we can intuitively view the WP algorithm as follows. It first tests to see

the extent to which “flipping” the first input bit changes the value of the function.

If the bit is either highly relevant or highly irrelevant then half of the coefficients

can be eliminated from further consideration. Similar tests are then performed

recursively on any coefficients that remain as candidates, with each recursive call

leading to one more bit being fixed in a candidate parity index a. After n levels

of recursion all n bits are fixed in all of the surviving candidate indices; these

indices are then the output of the algorithm. With probability at least 1 − δ,

this list contains indices of all of the parity functions that are θ-correlated with

f and no parity function that is not at least (θ/
√

2)-correlated, and runs in time

O(nθ−6 log(n/δθ)) [9].

Furthermore, a θ−2 factor comes from the fact that in general the algorithm

must maintain up to this many candidate sets of coefficients at each level of

the recursion. In the case of learning parity, it can be shown that with high

probability only one candidate set will survive at each level. Therefore, when

learning PAR, the running time becomes O(nθ−4 log(n/δθ)).

It is well known that this algorithm can be used to weakly learn certain

function classes with respect to the uniform distribution using parity functions

as hypotheses [11,9]. However, we note here that it can also be used to (strongly)

learn PAR with respect to the uniform distribution in the presence of random

classification noise. Let f η represent the randomized Boolean function produced

by applying classification noise of rate η to the target parity function f . That is,

assume that on each call to MEM(f η) the oracle returns the value of MEM(f)

with noise of rate η applied, and noise is applied independently at each call to

20 Jackson / PAC Algorithms Derived from Statistical Queries

MEM(fη). Let Eη[·] represent expectation with respect to noise of rate η applied

to f . Then it is straightforward to see that

Eη[Ex∼Un [fη(x)χb(x)]] = (1 − 2η)f̂(b).

Furthermore, the only use the WP algorithm makes of MEM(f) is to compute

µ′ in WP-aux, which is an estimate of Ex∼Un−k,y∼Uk,z∼Uk
[f(yx)f(zx)χb(y ⊕ z)].

Replacing f by fη in this expression, we get an expectation that also depends

on the randomness of fη. However, since classification noise is applied inde-

pendently to fη(yx) and fη(zx)—even if y = z, as long as the values f η(yx)

and fη(zx) are returned from separate calls to MEM(f η)—it follows that

Eη,x,y,z[f
η(yx)fη(zx)χb(y ⊕ z)] = (1 − 2η)2Ex,y,z[f(yx)f(zx)χb(y ⊕ z)], where

the first expectation is over the randomness of f η as well as the inputs. Finally,

none of the analysis [9] used to prove properties about the output of the WP al-

gorithm precludes the target f from being randomized; independence of samples

and the range of values produced by f are the key properties used in the proof,

and these are the same for fη as they are for the deterministic f .

In short, running WP with θ = 1 − 2η and membership oracle MEM(f η)

representing a target f = χb will, with high probability, result in an output

list that contains b. Furthermore, since by Parseval’s identity and the above

analysis Eη[Ex∼Un [fη(x)χa(x)]] = 0 for all a ∈ {0, 1}n such that a 6= b, with high

probability only index b will appear in the output list.

Of course, a noisy membership oracle as above can be used to simulate a

noiseless oracle by simple resampling, so the observation that the WP algorithm

can be used to learn PAR in the presence of noise is not in itself particularly

interesting. However, we next show that we can simulate the WP algorithm with

one that does not use membership queries, giving us a uniform-distribution noise-

tolerant PAC algorithm for PAR that will be shown to be relatively efficient

compared with SQ-based algorithms.

5.2. Removing the membership oracle

As discussed above, Goldreich-Levin uses the membership oracle MEM(f)

to perform the sampling needed to estimate the expected value Ex,y,z[f(yx)f(zx)χb(y⊕
z)]. At the first level of the recursion, |x| = n − 1, we (conceptually) “flip” the

first bit (technically, y and z will often have the same value, but it is the times

when they differ that information about a deterministic function is actually ob-

Jackson / PAC Algorithms Derived from Statistical Queries 21

tained). Notice that we would not need the membership oracle if we had—or

could simulate—a sort of example oracle that could produce pairs of examples

(〈yx, f(yx)〉, 〈zx, f(zx)〉) drawn according to the uniform distribution over x, y,

and z. We will denote by D1 the induced distribution over pairs of examples.

Lemma 8 in the Appendix proves that if 2k/2+1 k-bit vectors are drawn

uniformly at random, then with probability at least 1/2 one vector will occur

twice in the sample. Therefore, if we draw a sample S of examples of f of size

2(n+1)/2 then with probability at least 1/2 a pair of examples will be drawn having

the same final n − 1 bits. And for any such pair, it is just as likely that the first

bits of the two functions will differ as it is that they will be the same. Thus, with

probability at least 1/2 we can simulate one draw from D1 by creating a list of

all pairs of examples in S that share the same values on the final n− 1 attributes

and choosing one of these pairs uniformly at random.

Slightly more precisely, we will draw 2(n+1)/2 examples and record in a list

each n−1 bit pattern that appears at the end of more than one example; each such

pattern appears once in the list. We then choose one such pattern uniformly at

random from the list. Finally, from among the examples ending with the chosen

pattern, we select two examples uniformly at random without replacement.

Note that the probability of selecting any particular n − 1 bit pattern from

the list is the same as selecting any other pattern. Therefore, we are selecting this

pattern—corresponding to the choice of x in the expectation above—uniformly at

random. Note also that our method of choosing the two examples ending with this

pattern guarantee that the first bits of these examples—corresponding to y and z

above—are independently and uniformly distributed. Therefore, with probability

at least 1/2, this procedure simulates D1. Furthermore, if a particular set S fails

to have an appropriate pair of examples, we can easily detect this condition and

simply draw another set of examples. With probability at least 1 − δ, we will

obtain an appropriate set within log(1/δ) draws.

Now let D2 represent the the probability distribution on pairs of examples

corresponding to choosing an (n − 2)-bit x uniformly at random, choosing 2-bit

y and z uniformly at random, and producing the pair (〈yx, f(yx)〉, 〈zx, f(zx)〉).
The procedure above can be readily modified to simulate a draw from D2 using

draws of only 2n/2 uniform examples. Similar statements can be made for the

other distributions to be simulated.

In short, we have shown how to simulate draws from any of the probability

distributions induced by the weak parity procedure, at a cost of roughly 2n/2

22 Jackson / PAC Algorithms Derived from Statistical Queries

draws from the uniform distribution. Also note that the argument above has

nothing to do with the labels of the examples, and so holds for randomized f η as

well as for deterministic f . Thus we have the following theorem.

Theorem 7. For any noise rate η < 1/2 and confidence δ > 0, the class PAR of

parity functions can be learned in the uniform random classification-noise model

with respect to the uniform distribution in time O(2n/2nθ−4 log2(n/δθ)), where

θ = 1 − 2η.

5.3. Improved noise tolerance

Consider the following noise model: given a target parity function f = χa,

the noise process is allowed to generate a deterministic noisy function f η (η here

denotes only that the function is a noisy version of f and not a uniform noise

rate) subject only to the constraints that Ex[fη(x)χa(x)] ≥ θ for some given

threshold θ, and for all b 6= a, Ex[fη(x)χb(x)] < θ/
√

2. That is, fη must be at

least θ-correlated with f and noticeably less correlated with every other parity

function. It should be clear that the algorithm of this section, given θ, can

strongly learn PAR with respect to uniform in this fairly general noise setting

in time O(2n/2nθ−6 log2(n/δθ)). The Blum et al. algorithm, on the other hand,

seems to be more dependent on the uniform random classification noise model.

However, a version of their algorithm is distribution independent, which raises

the interesting question of whether or not the modified WP algorithm above can

also be made distribution independent.

Acknowledgements

This work was initially inspired by work of Dan Ventura on the quantum

learnability of the parity class. The author also thanks Tino Tamon for helpful

discussions. Thanks also to the anonymous referee of the conference proceedings

version of this paper who pointed out how the Blum, Kalai, and Wasserman

algorithms could be applied to the problem considered in this paper.

References

[1] Javed A. Aslam and Scott E. Decatur. Specification and simulation of statistical query

algorithms for efficiency and noise tolerance. Journal of Computer and System Sciences,

Jackson / PAC Algorithms Derived from Statistical Queries 23

56(2):191–208, April 1998.

[2] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and Steven

Rudich. Weakly learning DNF and characterizing statistical query learning using Fourier

analysis. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing,

pages 253–262, 1994.

[3] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity prob-

lem, and the Statistical Query model. In Proceedings of the Thirty-Second Annual ACM

Symposium on Theory of Computing, pages 435–440, 2000.

[4] Béla Bollobás. Random Graphs. Academic Press, 1985.

[5] Nader Bshouty and Christino Tamon. On the Fourier spectrum of monotone functions.

Journal of the ACM, 43(4):747–770, July 1996.

[6] N. Cesa-Bianchi, E. Dichterman, P. Fischer, E. Shamier, and H.U. Simon. Sample-efficient

strategies for learning in the presence of noise. Journal of the ACM, 46(5):684–719, 1999.

[7] Yoav Freund and Robert E. Schapire:. A decision-theoretic generalization of on-line learning

and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997. First appeared

in EuroCOLT ’95.

[8] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In

Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, pages

25–32, 1989.

[9] Jeffrey Jackson. An efficient membership-query algorithm for learning DNF with respect

to the uniform distribution. Journal of Computer and System Sciences, 55(3):414–440, 12

1997. Earlier version appeared in Proceedings of the 35th Ann. Symp. on Foundations of

Computer Science, pages 42–53, 1994.

[10] Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. In Proceedings

of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages 392–401,

1993.

[11] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier spectrum.

SIAM Journal on Computing, 22(6):1331–1348, December 1993. Earlier version appeared

in Proceedings of the Twenty Third Annual ACM Symposium on Theory of Computing,

pages 455–464, 1991.

[12] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier trans-

form, and learnability. Journal of the ACM, 40(3):607–620, July 1993. Earlier version

appeared in Proceedings of the 30th Annual Symposium on Foundations of Computer Sci-

ence, pages 574–579, 1989.

[13] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227, 1990.

[14] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,

November 1984.

APPENDIX

This is a lemma that is needed to prove Theorem 7.

24 Jackson / PAC Algorithms Derived from Statistical Queries

Lemma 8. If 2k/2+1 k-bit vectors are drawn uniformly at random, then with

probability at least 1 − 1/e one vector will occur twice in the sample.

Proof. The proof is similar to that of the birthday paradox. First, note that the

probability that two randomly drawn k-bit vectors do not match is 1−1/2k. The

probability that a third vector does not match either of the first two is 1− 2/2k,

and thus the probability that none of the vectors match is (1 − 1/2k)(1 − 2/2k).

In general, if 2k/2+1 vectors are drawn, then the probability that none match is

2k/2+1
∏

i=1

1 − i

2k
≤

2·2k/2
∏

i=2k/2

1 − i

2k
≤

(

1 − 2k/2

2k

)2k/2

≤ 1

e
.

Thus the probability of a match is at least 1 − 1/e.

The following technical lemmas about the binomial distribution are used in

Section 4. The first lemma is well known (for a proof, see, e.g., [4]).

Lemma 9. Let B(k; m, p) ≡ (m
k

)

pk(1 − p)m−k represent the binomial distribu-

tion. For m and p < 1 fixed, the maximum value of the binomial distribution

occurs at the first integer k = km greater than p(m + 1) − 1.

Lemma 10. For m > 0 and p < 1 fixed, the maximum value of the integer km at

which the maximum of the binomial distribution occurs is such that (km/m)(1−
km/m) ≥ p(1 − p) − 1/m.

Proof. By Lemma 9, the km that maximizes B(k; m, p) satisfies p(m + 1)− 1 <

km ≤ p(m + 1). Some algebra and simplification then gives the result.

Lemma 11. For any integer m > 1, integer 0 < k < m, and real 0 ≤ p ≤ 1,

B(k; m, p) ≤ B(k; m, k/m).

Proof. We want to know the value of p that maximizes B for fixed k and m

satisfying the constraints above. We can find the maximizing value of p by

examining values of p that make the derivative dB/dp zero. It is easily shown

that the derivative is zero only at p = k/m, p = 0, and p = 1 and that p = k/m

is the only local maximum.

Jackson / PAC Algorithms Derived from Statistical Queries 25

Lemma 12. For any integer m ≥ 5, integer 0 < k < m, and real 1/3 ≤ p ≤ 2/3,

B(k; m, p) ≤ 0.406
√

mp(1 − p) − 1
.

Proof. We will maximize B(k; m, p) over both k and p, then develop a bound

on this maximized quantity.

We already showed in Lemma 11 that maximizing the binomial distribution

over p gives p = k/m. Using a fairly tight version of the Stirling bound

mme−m
√

2πme1/(12m+1) ≤ m! ≤ mme−m
√

2πme1/12m

we get that for any 0 < k < m and m ≥ 1,
(

m

k

)

≤ e1/12m

√

2πm(1 − k/m)(k/m)(1 − k/m)m−k(k/m)k

and for m ≥ 5 this gives

B(k; m, k/m) ≤ 0.406
√

m(k/m)(1 − k/m)
.

Thus we have that

B(k; m, p)≤B(km; m, p)

≤B(km; m, km/m)

≤ 0.406
√

m(km/m)(1 − km/m)

≤ 0.406
√

mp(1 − p) − 1

where we applied Lemma 10 in the final step. Finally, note that
√

mp(1 − p) − 1

is well-defined for all m and p as constrained by the statement of the lemma.

Similarly, we can show

Lemma 13. For any integer m and any real 0 ≤ p ≤ 1, mp(1 − p) > 1 implies

that B(k; m, p) ≤ 0.46. Furthermore, in terms of p,

B(k; m, p) ≤ 0.406
√

mp(1 − p) − 1
.

Proof. First, note that for all 0 < p < 1, 1/(p(1−p)) ≥ 4. Thus if m > 1/(p(1−
p)) then m ≥ 5, and therefore Lemma 12—and its proof—apply if mp(1−p) > 1.

26 Jackson / PAC Algorithms Derived from Statistical Queries

Therefore, if mp(1 − p) > 1 then B(k; m, p) ≤ 0.406/
√

m(km/m)(1 − km/m) ≤
0.406/

√

mp(1 − p) − 1. Next, notice that if m ≥ 1/p then by Lemma 9 the

value k = km at which the binomial B(k; m, p) is maximized must be at least 1.

Similarly, if m ≥ 1/(1 − p), km ≤ m − 1. It is easy to see that, as a function

of km,
√

m(km/m)(1 − km/m) is minimized at its extremes, which we have just

shown to be at worst km = 1 and km = m − 1 if mp(1 − p) > 1. Plugging either

km = 1 or km = m − 1 into 0.406/
√

m(km/m)(1 − km/m) with m ≥ 5 gives a

value less than 0.46.

