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Abstract. We generalize the notion of PAC learning from an example oracle to a notion of
efficient learning on a quantum computer using a quantum example oracle. This quantum example
oracle is a natural extension of the traditional PAC example oracle, and it immediately follows that all
PAC-learnable function classes are learnable in the quantum model. Furthermore, we obtain positive
quantum learning results for classes that are not known to be PAC learnable. Specifically, we show
that DNF is efficiently learnable with respect to the uniform distribution by a quantum algorithm
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membership oracle, we prove that a quantum example oracle with respect to uniform is less powerful
than a membership oracle.
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1. Introduction. Recently, there has been significant interest in the question of
to what extent quantum physical effects can be used to solve problems that appear
to be computationally difficult using traditional methods [16, 8, 7, 6, 33, 31, 30]. In
this paper, we apply quantum methods to questions in computational learning theory.
In particular, we focus on the problem of learning—from examples alone—the class
DNF of polynomial-size Disjunctive Normal Form expressions.

The DNF learning problem has a long history. Valiant [32] introduced the prob-
lem and gave efficient algorithms for learning certain subclasses of DNF'. Since then,
learning algorithms have been developed for a number of other subclasses of DNF
[25, 4, 2, 21, 3, 1, 11, 27, 13, 10] and recently for the unrestricted class of DNF ex-
pressions [22], but almost all of these results—and in particular the results for the
unrestricted class—use membership queries (the learner is told the output value of
the target function on learner-specified inputs). While Angluin and Kharitonov [5]
have shown that if DNF is PAC learnable in a distribution-independent sense (defini-
tions are given in the next section) with membership queries then it is learnable with
respect to polynomial-time computable distributions without these queries, the ques-
tion of to what extent membership queries are necessary for distribution-dependent
DNF learning is still open. In particular, Jackson’s Harmonic Sieve [22] learns DNF
with respect to uniform using membership queries; can DNF be learned with respect
to uniform from a weaker form of oracle?

We show that DNF is efficiently learnable with respect to the uniform distribution
by a quantum algorithm that receives its information about the target function from a
quantum example oracle. This oracle generalizes the traditional PAC example oracle
in a natural way. Specifically, the quantum oracle QEX (f, D) is a traditional PAC
example oracle EX(f, D) except that QEX(f, D) produces the example (z, f(z))
with amplitude y/D(z) rather than with probability D(z). We also show that, with
respect to the uniform distribution, a quantum example oracle can be simulated by a
membership oracle but not vice versa.

To obtain our quantum DNF learning algorithm, we modify the Harmonic Sieve
algorithm (HS) for learning DNF with respect to uniform using membership queries
[22]. In fact, HS properly learns the larger class ﬁl of functions expressible as a
threshold of a polynomial number of parity functions, and our algorithm properly
learns this class as well. The Harmonic Sieve uses membership queries to locate
parity functions that correlate well with the target function with respect to various
near-uniform distributions. The heart of our result is showing that these parities can
be located efficiently by a quantum algorithm using only a quantum example oracle.

Our primary result, then, is to show that DNF is quantum-learnable using an
oracle that is strictly weaker than a membership oracle. Our algorithm also possesses
a somewhat better asymptotic bound on running time than the Harmonic Sieve. We
consider the potential significance of these results in more detail in the concluding
section.

2. Definitions and Notation.

2.1. Functions and Function Classes. We will be interested in the learnabil-
ity of sets (classes) of Boolean functions over {0,1}™ for fixed positive values of n. It
will be convenient to use different definitions for “Boolean” in different contexts within
this paper. In particular, at times we will think of a Boolean function as mapping to
{0,1} and at other times to {—1,+1}; the choice will either be indicated explicitly
or clear from context. We call {0,1}" the instance space of a Boolean function f, an
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element x in the instance space an instance, and the pair (z, f(x)) an ezample of f.
We denote by x; the ¢th bit of instance x.

Intuitively, a learning algorithm should be allowed to run in time polynomial in
the complexity of the function f to be learned; we will use the size of a function as
a measure of its complexity. The size measure will depend on the function class to
be learned. In particular, each function class F that we study implicitly defines a
natural class Rz of representations of the functions in F. We define the size of a
function f € F as the minimum, over all 7 € R such that r represents f, of the size
of r, and we define below the size measure for each representation class of interest.

A DNF expression is a disjunction of terms, where each term is a conjunction of
literals and a literal is either a variable or its negation. The size of a DNF expression
r is the number of terms in . The DNF function class is the set of all functions that
can be represented as a DNF expression of size polynomial in n.

Following Bruck [12], we use PT; to denote the class of functions on {0,1}"
expressible as a depth-2 circuit with a majority gate at the root and polynomially-
many parity gates at the leaves. All gates have unbounded fanin and fanout one. The
size of a PT circuit r is the number of parity gates in r.

2.2. Quantum Turing Machines. We now review the model of quantum com-
putation defined by Bernstein and Vazarani [6]. First we define how the specification
(program) of a quantum Turing machine (QTM) is written down. Then we describe
how a QTM operates.

The specification of a QTM is almost exactly the same as the specification of a
probabilistic TM (PTM). Recall that the transition table of a PTM specifies, for each
state and input symbol, a set of moves—a move is a next state, new tape symbol,
and head movement direction—along with associated probabilities that each move
will be chosen. Of course, these probabilities must be non-negative and sum to
one. In a QTM specification, the transition probabilities between PTM configura-
tions are replaced with complex-valued numbers (amplitudes) that satisfy a certain
well-formedness property. Loosely speaking, if the sum of the squares of the ampli-
tudes for the transitions corresponding to each state/symbol pair is one, then the
QTM is satisfies the well-formedness property. A somewhat peculiar aspect of am-
plitudes is that they may have negative real components, unlike the probabilities of
the PTM model. Formally, we define well-formedness as follows. For a QTM M, let
Ry be the (infinite-dimensional) matrix where each row and each column is labeled
with a distinct machine configuration (¢, and ¢, respectively) and each entry in Ry
is the amplitude assigned by M to the transition from configuration ¢, to ¢,.. Then
M satisfies the well-formedness property if Ry, is unitary (RR[RM = RMRR[ =1,
where RL is the transpose conjugate of Rys). A QTM specification also contains a
set of states (including all of the final states) in which an Obs operation is performed;
we define this operation below.

To describe the operation of a QTM, we use the notion of a superposition of
configurations. For example, consider a probabilistic Turing machine M’ that at step
1 flips a fair coin and chooses to transition to one of two configurations ¢; and c;. While
we would generally think of M’ as being in exactly one of these configurations at step
1+ 1, we can equivalently think of M’ as being in both states, each with probability
1/2. Continuing in this fashion, for each step until M’ terminates we can think of M’
as being in a superposition of states, each state with an associated probability. After
M’ takes its final step, each of its final states will have some associated probability
(we assume without loss of generality that all computation paths in M’ have the same
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length). If M’ now “chooses” to be in one of these final states oy randomly according
to the induced probability distribution on final states, then the probability of being
in oy is exactly the same in this model as it is in the traditional PTM model.

In summary, we can view a PTM M’ as being in a superposition of configurations
at each step, where a superposition is represented by a vector of probabilities, one for
each possible configuration of M’. Likewise, we view a QTM M as being in a super-
position of configurations at each step, but now the superposition vector contains an
amplitude for each possible configuration of M. The initial superposition vector in
both cases is the all-zero vector except for a single 1 in the position corresponding to
the initial configuration of the machine. Note that each step of a PTM M’ can be
accomplished by multiplying the current superposition vector by a matrix Rj;» which
is defined analogously with Rj; above. In the same way, each step of a QTM M is
accomplished by multiplying its current superposition vector by Rp;. The difference
between the machines comes at the point(s) where M “chooses” to be in a single
configuration rather than in a superposition of configurations. M does this (concep-
tually) by transitioning to a superposition of configurations all of which are in one of
the Obs states mentioned above. The superposition vector is then changed so that a
single configuration has amplitude 1 and all others are 0. This is exactly analogous
to the PTM M’ choosing its final state, except that the probability of choosing each
configuration ¢; is now the square of the magnitude of the amplitude associated with
¢; in M’s current superposition vector. (We formalize the definition of Obs below.)

The notation
> aalr)
xT

denotes a superposition of configurations = each having amplitude a,. While in general
this sum is over all possible configurations of the QTM, when we use this notation it
will be the case (unless otherwise noted) that all of the configurations having nonzero
amplitude are in the same state and have the tape head at the same position. In this
case, the configurations x are only distinguished by their tape contents, so we will treat
x as if it is merely the tape content and ignore the other configuration parameters.
We will also assume that all tapes contain the same number of non-blank characters
unless otherwise noted.

Given this notation, we now more formally define the Obs operation. Intuitively,
an Obs will collapse a superposition S to one of two possible superpositions Sy or Sy,
with the choice of superposition based on a probability that is a function of the value
of the first bit of the tape (we are implicitly assuming that when an Obs is performed
the configurations in a superposition differ only in terms of what is on the respective
tapes, which will be sufficient for our purposes). Specifically, let b € {0,1}. Then

Obs (Z abw|bx>> =
bz

>, =2=—|0z) with probability Y |aos|?
Zy |a0y|
>, =~4=—|lz) with probability Y, |ai.|?.
Ey lasyl r
Note that by permuting bits of the tape and performing successive Obs operations we
can simulate the informal definition of Obs given earlier. We say that a language L
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is in BQP if there exists a QTM M such that, at the end of a number of steps by
M polynomial in the length of the input to M, an Obs fixes the first tape cell to 1
with probability at least 2/3 if the input is in L and fixes it to 0 with probability at
least 2/3 otherwise. We will also sometimes think of an Obs as simply computing the
probability that the first cell will be fixed to 1.

Finally, we will at times want to introduce deterministic transitions into our
QTM’s while preserving the well-formedness property of the transition matrices. It
can be shown [15] that as long as a deterministic computation is reversible then the
computation can be carried out on a QTM. Informally, a computation is reversible if
given the result of the computation it is possible to determine the input to the com-
putation (see [6] for a formal definition and discussion of reversibility in the context
of quantum computation).

2.3. Standard Learning Models. We begin by defining the well-known PAC
learning model and then generalize this to a quantum model of learning. First, we
define several supporting concepts. Given a function f and probability distribution D
on the instance space of f, we say that the Boolean function i having as its domain the
instance space of f is an e-approzimator for f with respect to D if Prplh = f] > 1—e.
An example oracle for f with respect to D (EX(f, D)) is an oracle that on request
draws an instance x at random according to probability distribution D and returns
the example (x, f(x)). A membership oracle for f (MEM(f)) is an oracle that given
any instance x returns the value f(z). Let D,, denote a nonempty set of probability
distributions on {0,1}". Any set D = U, D,, is called a distribution class. We let U,
represent the uniform distribution on {0,1}™ and call U = U, U,, simply the uniform
distribution.

Now we formally define the Probably Approximately Correct (PAC) model of
learnability [32]. Let ¢ and ¢ be positive values (called the accuracy and confidence
of the learning procedure, respectively). Then we say that the function class F is
(strongly) PAC learnable if there is an algorithm A such that for any ¢ and ¢, any
f € F (the target function), and any distribution D on the instance space of f
(the target distribution), with probability at least 1 — ¢ algorithm A(EX(f, D), €, )
produces an e-approximation for f with respect to D in time polynomial in n, the size
of f, 1/e, and 1/§. The probability that .4 succeeds is taken over the random choices
made by EX and A (if any). We generally drop the “PAC” from “PAC learnable”
when the model of learning is clear from context.

We will consider several variations on the basic learning models. Let M be any
model of learning (e.g., PAC). If F is M-learnable by an algorithm .4 that requires
a membership oracle then F is M-learnable using membership queries. If F is M-
learnable for e = 1/2 — 1/p(n, s), where p is a fixed polynomial and s is the size of f,
then F is weakly M-learnable. We say that F is M-learnable by H if F is M-learnable
by an algorithm A that always outputs a function h € H. If F is M-learnable by F
then we say that F is properly M-learnable. Finally, note that the PAC model places
no restriction on the example distribution D; we sometimes refer to such learning
models as distribution-independent. If F is M-learnable for all distributions D in
distribution class D then F is M-learnable with respect to D. Learning models which
place a restriction on the distributions learned against we call distribution-dependent
models.

2.4. The Fourier Transform. We will make substantial use of the discrete
Fourier transform in our analysis; this approach was introduced in machine learning
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by Linial, Mansour, and Nisan [28]. In this section we give some basic definitions and
standard theorems.
For each bit vector a € {0,1}" we define the function x, : {0,1}" — {—1,+1} as

Xal(@) = (1) 2= @ =1 9 (i: a;; mod 2) .

i=1

That is, x.(z) is the Boolean function that is 1 when the parity of the bits in x
indexed by a is even and is —1 otherwise. With inner product defined by! (f,g) =
E.[f(x) - g(x)] = E[fg] and norm defined by [|f]| = VE[f?], {Xa | @ € {0,1}"} is an
orthonormal basis for the vector space of real-valued functions on the Boolean cube
Z%. That is, every function f : {0,1}" — R can be uniquely expressed as a linear
combination of parity functions:

f= Z f(a)Xa;

ac{0,1}"

where f(a) = E[fxa]- We call the vector of coefficients f the Fourier transform of
f. Note that for f mapping to {—1,+1}, f(a) represents the correlation of f and x,
with respect to the uniform distribution. Also, let 0™ represent the vector of n zeros.
Then f(0") = E[fxo~] = E[f], since xon is the constant function +1.

By Parseval’s identity, for every real-valued function f, E[f*] =" . (0.1}n 12(a).
For f mapping to {—1,+1} it follows that )", fz(a) = 1. More generally, it can be
shown that for any real-valued functions f and g, E[fg] = )", f(a)g(a).

3. The Quantum Example Oracle. While DNF has been shown to be learn-
able with respect to uniform using membership queries [22], it is desirable to have a
DNF learning algorithm that can learn from examples alone. This seems to be a hard
problem using conventional computing paradigms. However, other problems—such
as integer factorization—which had seemed to be hard have recently been shown to
have efficient quantum solutions [30]. Thus it is natural to ask the following ques-
tion: is there a QTM M such that, given access to a traditional PAC example oracle
EX(f,D) for any function f in DNF, M efficiently learns an e-approximation to f?

In this paper, we consider a related question that we hope may shed some light
on the question posed above. Specifically, we consider the question of learning DNF
from a quantum example oracle. This oracle, which we define below, generalizes the
PAC example oracle to the quantum setting in a natural way. It should be noted
that questions about the power of quantum computing relative to oracles has been
investigated previously; for example, Berthiaume and Brassard [8, 7] consider the
relative abilities of quantum and more traditional Turing machines to answer decision
questions relative to a membership oracle.

We now define the quantum example oracle. Note that each call to the tradi-
tional PAC example oracle EX(f, D) can be viewed as defining a superposition of
2" configurations, each containing a distinct (z, f(z)) pair and having probability of
occurrence D(x). We generalize this to the quantum setting in a natural way. A
quantum example oracle for f with respect to D (QEX(f, D)) is an oracle running

IExpectations and probabilities here and elsewhere are with respect to the uniform distribution
over the instance space unless otherwise indicated.
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coherently with a QTM M that changes M’s tape |y) to
> D@y, z, f(x)).
xT

That is, QEX defines a superposition of 2" configurations much as £FX does, but
QFEX assigns each configuration an amplitude \/D(z). As with the Obs operation,
calls to QEX will be invoked by transitioning into designated states of M, and we
will assume that any valid QTM program has the property that at each step either
all of the states with nonzero amplitude in a superposition call QEX or none do.
Note that for any f and D, a call to QEX(f, D) followed by an appropriate Obs
operation is equivalent to a call to EX(f, D). We say that F is quantum learnable if
F is PAC learnable by a QTM M using a quantum example oracle. Because every
efficient TM computation can be simulated efficiently by a QTM [6] and because EX
can be simulated by QF X, we have that every PAC-learnable function class is also
quantum learnable.

For both standard and quantum example oracles, we use EX (f) (resp. QEX(f))
to represent learning with respect to the uniform distribution, that is, EX(f,U\)

(vesp. QEX(f.U4y)).

4. Learning DNF from a Membership Oracle. In the next section we
present our primary result, that DNF is quantum learnable with respect to the uni-
form distribution. Our result builds on the Harmonic Sieve (HS) algorithm for learning
DNF with respect to the uniform distribution using membership queries [22]. In this
section we briefly review the Harmonic Sieve.

4.1. Overview of HS. The HS algorithm depends on a key fact about DNF
expressions: for every DNF f and distribution D there is a parity x, that is a weak
approximator to f with respect to D [22]. Also, for any function weakly approximable
with respect to uniform by a parity function, a technique originally due to Goldreich
and Levin [20] and first applied within a learning algorithm (KM) by Kushilevitz and
Mansour [26] can be used to find such a parity (using membership queries). Combining
these two facts gives that the KM algorithm weakly learns DNF with respect to uniform
[9].

An obvious method to consider for turning this weak learner into a strong learner
is some form of hypothesis boosting [29, 18, 17, 19]. In fact, HS is based on a partic-
ularly simple and efficient version of boosting discovered by Freund [18]. Each stage
i of Freund’s boosting algorithm explicitly defines a distribution D; and calls on a
weak learner to produce a weak approximator with respect to D;. Distribution D; is
defined in terms of the performance of the weak hypotheses produced at the preceding
boosting stages and in terms of the target distribution D. After a polynomial number
of stages, a majority vote over the weak hypotheses gives a strong approximator with
respect to D.

So in order to strongly learn DNF with respect to a distribution D, all that is
needed is an efficient algorithm for weakly learning DNF with respect to the set of dis-
tributions {D;} defined by Freund’s algorithm in the process of boosting with respect
to D. While the question of whether or not such an algorithm exists for arbitrary D is
an open problem, it is known that when boosting with respect to uniform a modified
version of the KM algorithm can efficiently find a weakly-approximating parity for any
DNF f with respect to any of the distributions D; defined by Freund’s algorithm [22].
When learning with respect to such a distribution D;, the modified KM algorithm must
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Invocation: h <« HS(n,s, MEM(f),€,d)

Input: n; s = size of DNF f; MEM(f); e >0; 5 >0
Output: with probability at least 1—4§ (over random choices made by HS), HS returns
h such that Pr[f =h] >1—¢

v—1/(8s+4)

2. k< 3y 2In(4/e)

3. wqo < WDNF(n,s, MEM(f),Uy,0/2k)

4. fori«—1,...,k—1do

5. B(jn,p) = (5)p'(1—p)"

6

7

8

—_

Bi=B(|k/2) —rk—i—1,1/2+7)ifi—k/2 <r < k/2, 3. = 0 otherwise
al = 5i/maxr:0,...,i71{5i}~
ri(z) = {0 < j <ifwj(x) = f(z)}

9. O =cyéd
10. E, — Est(Ex[aii(m)],EX(f),@/3,5/2k)
11. if £, < 20/3 then
12. k—1i
13. break do
14. qndif

15. Di(z) = afﬂi(l_)/Q”Ea

16.  w; — WDNF(n,s, MEM(f), D;(x),5/2k)
17. enddo

18. h(x) = MAJ(wo(x),wi(z),...,wp—1(x))
19. return h

Fic. 4.1. Harmonic Sieve (HS) algorithm for learning DNF from a membership oracle.
Est(E,EX(f),€,0) uses random sampling from EX(f) to efficiently estimate the value of E, pro-
ducing a value within an additive factor of € of the true value with probability at least 1 — 6. c2
represents a fized constant (1/57 is sufficient).

Invocation: w; < WDNF(n,s, MEM(f),cD,0)
Input: n; s = size of DNF f; MEM(f); ¢D, an oracle that given x returns ¢- D(x),
where ¢ is a constant in [1/2,3/2] and D is a probability distribution on {0,1}";6 >0
Output: with probability at least 1 — § (over random choices made by WDNF), WDNF
returns h such that Prp[f =h] > 1/2+1/(8s+4)

1. g(z) =2"f(z)eD(x)

2. find (using membership queries and with probability at least 1 — ) x, such

that [E[gxa]| > ¢/(4s +2)
3. h(z) = sign(E[gxa]) - xa(@)
4. returnh

F1G. 4.2. WDNF subroutine called by HS.

be given not only a membership oracle for f but also an oracle for the distribution D,
that is, a function which given an instance x returns the weight that D, places on z.
Because Freund’s booster explicitly defines the distribution D; at each boosting stage
i, an oracle for each D; can be simulated and therefore the modified KM algorithm can
be boosted by a modified version of Freund’s algorithm that supplies D; to the weak
learner at each stage i. This then gives a strong learning algorithm for DNF with
respect to uniform using uses membership queries.
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4.2. Algorithmic Details. The HS algorithm and its primary subroutine WDNF
(the modified KM) are sketched in somewhat more detail in Figures 4.1 and 4.2. We
will assume here and elsewhere that the number of terms s in the target function’s
representation as a DNF is known. This assumption can be relaxed by placing a
standard guess-and-double loop around the body of the HS program (see, e.g., [24]
for details); this increases the running time of the algorithm by at most a factor of
log s. The HS algorithm runs for O(s?log(1/€)) stages. At each stage i, ;(z) (line 8)
represents the number of weak hypotheses w; among those hypotheses produced before
stage i that are “right” on z. For uniform target distribution, the distributions D;
defined by Freund’s booster are given by

aii(ﬁ)

2y ()

where «;.,(,) is defined in Figure 4.1. Note that while D; is explicitly defined, it
is not computationally feasible to compute D; exactly because of the sum over an
exponential number of terms in the denominator of (4.1). However, by a Chernoff
bound argument this sum, and therefore D;, can be closely approximated in time
polynomial in the standard parameters. The function D, is HS’s approximation to D;.
Note that because of the bound on the variable E, and the accuracy with which E,,
estimates Eg[o, )], with probability at least 1 — §/2k, Ey[a] )] = c3Eq for fixed
c3 € [1/2,3/2]. With the same probability, then, D;(x) = c3D;(z) for all z.

Therefore, while we show WDNF in Figure 4.1 being called with an argument D, (z),
the corresponding parameter in Figure 4.2 is ¢D, an oracle representing the product
of a constant and a probability distribution. This oracle along with the membership
oracle for the target f is used by WDNF to simulate an oracle g. We have omitted
the details of line 2 of WDNF because this is the main point at which our quantum
algorithm will differ from HS. Rather than using membership queries to locate the
required parity o, the new algorithm will use a quantum example oracle. Both
algorithms depend on a key fact about DNF expressions [22]: for every DNF f with
s terms and for every distribution D there exists a parity x, such that

(4.1) Di(x) =

|ED[fXa]| >

25+ 1"

It follows from the definition of expectation that for either h = x, or h = —x,

1 1
Prolf =hl2 3+ 5%
The WDNF algorithm can only guarantee to find a parity which is nearly optimally
correlated with the target, which is why another factor of two is given up by the algo-
rithm. Finally, WDNF also relies on the easily-verified fact that for g(x) = 2" f(z)cD(x),
Elgxa] = ¢Ep[fxa]- In essence, by combining the target f and distribution D we
create a function g with the property that the large Fourier coefficients of g corre-
spond to parities that are weak approximators to f with respect to D. This is why
the hypothesis returned by WDNF is appropriate.

The version of WDNF modified to utilize a quantum example oracle is based on a
similar idea of learning with respect to uniform in order to find a weak hypothesis
with respect to a nonuniform distribution, but the implementation of the idea is quite
different. We develop the modified algorithm in detail in the next section.
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5. Learning DNF from a Quantum Example Oracle. In this section we
show how to modify the Harmonic Sieve in order to uniform-learn DNF using a
quantum example oracle rather than a membership oracle. First, consider the call to
WDNF at line 16 of HS for a fixed i, and for notational convenience let D = D; and

alz) = aii () Then given the discussion concerning D; above and the definition of

D; at line 15 in Figure 4.1, with high probability there is a ¢3 € [1/2,3/2] such that
for all xq,

> f(@)xa(@) Di(2) = esEp[fxal = Elofxal/Ea-

Also, again with high probability, the call to Est at line 10 is successful in estimating
E[a] to within the desired accuracy and therefore E, > 20/3. Applying this obser-
vation to the equation above and invoking the key DNF fact cited earlier gives that
with high probability, each time WDNF is called there exists some x, such that

(@) 6263
(5.1) |Elafxall > 3(2s+1) = 3(2s + 1)

and this x, (or its inverse) is a (1/(4s + 2))-approximator to f. Our goal will be to
find such a y,, or at least one that is nearly as good an approximator, using only a
quantum example oracle for f.

Conceptually, to find such a y, we will repeatedly run a quantum subprogram
that randomly selects one x, each time the subprogram runs. On any given run each
Xa is selected with probability proportional to E2[afx,]. The technique we use to
perform this random sampling from the set of x,’s is similar to a quantum algorithm
of Bernstein and Vazarani that samples the x,’s with probability f2(a) = E2[fxa].
However, there are two difficulties with using their technique directly. First, their
algorithm uses calls to the function f (membership queries), and we want an algorithm
that uses only quantum example queries. Second, their technique works for Boolean
({—1,+1}-valued) functions, but the pairwise product af, viewed as representing a
single function, is clearly not Boolean in general. We address each of these difficulties
in turn below.

5.1. Randomly selecting parities using a quantum example oracle. Our
first step in modifying WDNF to learn from a quantum example oracle for Boolean f—
QEX (f)—rather than from a membership oracle is to show that we can randomly
select parity functions with probability proportional to f2 using only QEX (f). The
proof of the following lemma presents the required algorithm QSAMP.

LEMMA 1. There is a quantum program QSAMP that, given any quantum example
oracle QEX (f) for f:{0,1}™ — {—1,4+1}, returns x, with probability fz(a)/Q.
Proof: QSAMP begins by calling QEX (f) on a blank tape to get the superposition

Sz O ke £ (@),

QSAMP next replaces f(x) with (1—f(z))/2 (call this f/(z)); note that (—1)/" @) = f(z).
Then we will apply a Fourier operator F' to the entire tape contents. We define F' as

Flla) = 57 S (1))
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where |a| = |y| = n. This operation can be performed in n steps by a quantum Turing
machine [6]. Also recall that (—1)¥ = x4(y) = xy(a). Thus applying F' gives us

F (2% > |x,f'<x>>>
= o S Flle £ @)

1 x- "(x)z
= 2n+1/2 Z(—l) y(_l)f( ) |y,Z>

.Y,z

- % > Eulxy (@) f(@)]ly, 1)

1
+75 %:Er[xy(w)]\y,@

= 5 X iy + 0.0

where |y| = |z| = n and |z| = 1 and the final line follows by orthonormality of the

parity basis. An Obs operation at this point produces |y, 1) with probability f2 (v)/2,
as desired.

5.2. Sampling parity according to coefficients of non-Boolean functions.
While algorithm QSAMP is a good first step toward relaxing HS’s requirement for a
membership oracle, it is not enough. As noted above, we need to sample the parity
functions according to the coeflicients of the non-Boolean function af. We will do
this indirectly by sampling over individual bits of the function. First, note that we
can limit the accuracy of « and still compute an adequate approximation to E[af ]
Let T denote the quantity on the right-hand side of equation (5.1). Also let d =
[og(3/T)] = O(log(s/e?)). Then since 0 < a(z) < 1 for all z, for §(x) = [2%a(z)]27¢
we have

[B6 S xall > [Blafxll ~ 5

for all x,. Furthermore, note that any value 6 taken on by 6(z) can be written as
0=012"" + 0,272+ 40,27 + k277

where for each j € [1,d], 0, € {—1,+1} and k € {—1,0,1}. Thus

‘E[efXa“ < mjaX |E[9ija]| + g

By (5.1), with high probability there exists x, such that |E[afx,]| > T. Therefore,
for any such x, there is a fixed polynomial p; and an index j such that |E[0; fxa]| >
1/p1(s,1/€). Furthermore, for each j, the number of x,’s such that |E[f;fxa]| >
1/p1(s,1/€) is at most p3(s,1/€) by Parseval’s. This suggests that to find a weak
approximator to f with respect to D defined as in equation (4.1), we define 6 as
above and then apply quantum sampling using each of the d Boolean functions 6; - f.
We formalize this idea in the next section.
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Invocation: h «— HS'(n,s, QEX(f),¢€,0)
Input: n; s = size of DNF f; quantum example oracle QEX(f); e > 0; 6 >0
Output: with probability at least 1 — ¢ (over random choices made by HS'), HS’
returns h such that Pr[f =h] > 1—¢
v, k, o, r5(x), ©, Di(x) are defined as in HS
wq < WDNF’(n, s, MEM(f),U,d/2k)
fori—1,...,k—1do
EX(f) = Obs(QEX(f))
Eo — Est(E,[a! ], EX(f).0/3,5/2k)
if £, <20/3 then
k—1
break do
9. endif
10.  w; < WDNF’(n, s, QEX (f), Ds(x),8/2k)
11. enddo
12. h(x) = MAJ(wo(x), w1 (z),...,wp-1(x))
13. return h

—_

O NS oUW

F1G. 5.1. Modified Harmonic Sieve (HS') algorithm for learning DNF from a quantum ezample
oracle QEX(f).

Invocation: w; < WDNF’(n, s, QEX(f),a,0)
Input: n; s = size of DNF f; QEX(f); «, an oracle that given x returns a(z) € [0, 1];
0>0
Output: with probability at least 1 — § (over random choices made by WDNF’), WDNF’
returns h such that Prp[f =h] > 1/24+1/(8s+4)

L. T=ce3/(3(25+1))

2. d=[log(3/T)]
3. forj«—1,...,ndo
4.  for («1,...,224+11n(2n/6) do
5. h = QSAMP’(QEX (f),0;)
6. EX(f)=0bs(QEX(f))
7. E. « Est-a(h, EX(f),a,1/(8s5 +4),6/(n22?*21n(2n/5)))
8. if |[E.| > 3/(8s+4) then
9. return sign(E.) - h
10. endif
11. enddo
12. enddo

13. return 1

FI1G. 5.2. WDNF’' subroutine called by HS'. Procedure Est-a(h, EX(f),a,¢€,d), described in the
text, estimates Ep|fh] within accuracy € with probability at least 1—3§, where D(x) = a(x)/ Zy a(y).
0; represents the jth bit of a.

5.3. Modified HS algorithm. Combining the above observations, a quantum
algorithm for learning DNF with respect to uniform using a quantum example oracle
is obtained by modifying HS as shown in Figures 5.1 through 5.3. The first difference
between the new algorithm and the original is that Est will now be given a simulated
example oracle EX (f)—simulated using QEX (f) as explained in Section 3—in order
to estimate expected values.
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Invocation: h — QSAMP(QEX(f),0;)

Input: Quantum example oracle QEX(f); Boolean function 6;(z).

Output: For y # 0, returns y, with probability f2(y)/2. Returns x5 with probability
1/2+ f2(0)/2.

. Call QEX(f) on blank tape

In superposition, replace (reversibly) f(z) with (1 — f(x)8,(x))/2.

In superposition, apply Fourier operator F' to the n + 1 bits on the tape.
Perform an Obs operation.

Return x,, where y represents the first n bits on the tape.

G o =

F1G. 5.3. QSAMP’ subroutine called by WDNEF'.

The second, more important, difference is that in order to find a weak approx-
imator (line 2 of WDNF) we will use the quantum approach outlined above. That is,
for each value of j € [1,d] we will sample the x,’s in such a way that the probability
of seeing each Y, is exactly E[0;fx,]/2. We do this by running a modified QSAMP
that, after calling QEX (f), replaces f(z) with 6;(z)- f(x) expressed as a {0, 1}-valued
function. This is a reversible operation because x is still on the tape and 932- (x) =1 for
all x; therefore, this operation can be performed by a QTM. As shown in the previous
section, there exists some x, and some j such that x, is a weak approximator to f
and |E[0; fxa]| > T/3 > 2=, Therefore, if we run the modified QSAMP’ 224+ In(2n/4)
times for each value of j then—with probability at least 1 — §/2—at least one of the
Xa's returned by the quantum sampler will be this weak approximator.

Finally, we will again simulate EX (f)—this time within WDNF’—in order to test
whether or not a given h returned by QSAMP’ is a weak approximator. In order to
perform this test, Ep[fh] is estimated (where D is the distribution defined by « as in
equation (4.1)) by procedure Est-a. This procedure, given the uniform-distribution
example oracle EX (f) and the function a(x), simulates the example oracle EX (f, D)
using the same method as boost-by-filtering algorithms such as Freund’s. Specifically,
it queries EX(f) and receives the pair (z, f(x)). It then flips a biased coin which
produces heads with probability a(z). If the coin comes up heads then the algorithm
uses this pair in subsequent processing. Otherwise, it discards the pair, queries EX (f)
again, and repeats the coin-flip test. It can be shown that this process efficiently
simulates EX (f, D) for the a’s produced by our algorithm (see, e.g., [18]). Finally,
given EX(f, D), by a standard Chernoff argument we can estimate Ep[fh] with
the required accuracy and confidence with a number of samples polynomial in the
appropriate parameters. Overall, WDNF’ allocates half of the confidence § to estimating
the Ep[fh]’s. This gives us

THEOREM 2. DNF is quantum learnable with respect to uniform.

Also, ﬁl, the class of functions expressible as a threshold of a polynomial number
of parity functions, has the property that for every f € PT; and every distribution D
there exists a parity function y, that weakly approximates f with respect to D [22].
This was the only property of DNF that we used in the above arguments. Therefore

THEOREM 3. ﬁl is quantum learnable with respect to uniform.

We now briefly examine the asymptotic time bound of this algorithm. First, Cher-
noff bounds tell us that to estimate the expected value of a Boolean variable to within
an additive tolerance A with confidence § requires a sample (and time) O(A\?) (the
notation O() is the same as standard big-O notation with log factors suppressed; in
this case, § contributes only a log factor and therefore does not appear in the bound).
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Using this fact and the earlier description of the algorithm, it is straightforward to
show that the algorithm as given has a time bound of O(ns®/e'?). This compares
with a bound on the Harmonic Sieve of O(ns®/e'®). Furthermore, as noted in [24],
the €3 factor that appears in the Harmonic Sieve can be brought arbitrarily close
to €2; with this improvement the bounds improve to approximately O(ns6 /e®) and
(O(ns®/€'?), respectively. While neither bound is a “small” polynomial, the quantum
algorithm is somewhat of an improvement. It is also reasonable to suspect that fu-
ture improvements in the running time of the original algorithm would lead to similar
improvements in the quantum algorithm as well.

6. Membership Oracle vs. Quantum Example Oracle. In practice, it is
not clear how a quantum example oracle could be constructed without using a mem-
bership oracle. Furthermore, because a QTM uses interference over an entire super-
position to perform its computations, it might seem that perhaps there is some way
to simulate a membership oracle given only a quantum example oracle by choosing a
clever interference pattern. In this section we show that this is not the case.

DEFINITION 4. We say that membership queries can be quantum-example sim-
ulated for function class F if there exists a BQP algorithm A and a distribution D
such that for oll f € F and all x, running A on input x with quantum example oracle
QEX(f,D) produces f(z).

THEOREM 5. Membership queries cannot be quantum-erample simulated for
DNF.

Before proving this theorem, we develop some intuition. Consider two functions
fo and f; that differ in exactly one input x. Then the superpositions returned by
QEX (fo,D) and QEX(f1,D) are very similar for “almost all” D. In particular, if
we think of superpositions as vectors in an inner product space of dimension 2", then
there is in general an exponentially small angle between the superpositions generated
by these two oracles. This angle will not be changed by unitary transformations. So in
general, an observation will be unable to detect a difference between the superpositions
produced by QEX(fo, D) and QEX (f1,D). Therefore a BQP algorithm with only
a quantum example oracle QEX (f;, D), i € {0,1}, will be unable to correctly answer
a membership query on z for both fy and f;.

We now present two lemmas that will help us to formalize this intuition.

LEMMA 6. Let A be a quantum algorithm that makes at most t calls to QEX (f, D)
for f : {0,1}™ — {0,1}. Then there is an equivalent quantum program (modulo
a slowdown polynomial in n and t) that makes all t calls at the beginning of the
program.

Proof: Let Rj; be the unitary matrix representing the transitions of the QTM M.
Let the configurations of M be encoded by bit strings in any reasonable way. Then
suppose M is initially in a superposition

So = Zay|y>a
Yy

where the sum is over all possible configurations y of M. After a single transition g,
M will be in the superposition

S1 = Z ay Rz, y]|2).
Y,z

Now assume that all of the configurations z with nonzero amplitude in S; cause
QEX(f, D) to be called (recall that by definition, either all of the configurations in a
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superposition cause this to happen or none of them do). The resulting superposition
will be

Sy = Z V D(x)ayRM[z,yHZ,z,f(z))

T,Y,z

(by z,z, f(x) we mean the configuration that results when (z, f(z)) is appended to
the tape contents specified by the configuration z). But notice that there is a machine
M’ that, beginning with Sy, first calls QEX (f, D), producing

S1=Y_ VD@)ayly.x, f(x)),

and then simulates the transition u. A technical detail of this simulation is that a
transition that corresponds to writing in a blank cell of y’s tape necessitates shifting
xz and f(x) to the right one cell first. Thus M’ takes at most polynomially (in n)
many steps and produces Sy given Sy. A simple inductive argument completes the
proof. L

Before presenting the next lemma, we need several definitions.

DEFINITION 7. Define Obs over any linear combination of configurations (i.e.,
we no longer require that the sum of squared amplitudes be 1) as

Obs (Zz:%m) = > ful

Define the length of a linear combination of configurations S =) uz|z) to be ||S|| =
V2. [uz|?. For any linear combination of configurations S we define for i € {0,1}

56 = Z Ug|T).

x:x1=1

LEMMA 8. Let S1 and So be superpositions and let S be any linear combination
of configurations. Let W be any sequence of valid quantum operations. Then

1) Obs(S) < ||S]1%.

2) [IWS] = SIl-

3) |\/Obs(S1) — \/Obs(S2)| < 1/Obs(S1 — Sa).

Proof: For 1) we have

Obs(S) = ISV < |SOI2 + |sD* = ||5]>.

Part 2) follows from the fact that W is a unitary operation that preserves length.
To prove 3) we have

|v/Obs(S1) — 1/Obs(S2)| = ’HSP” _ HSél)H‘
<[5tV - 5§V
=/ 0bs(S1 — 52).

(]
Proof of Theorem 5: By way of contradiction, assume that M is a QTM that
can quantum-simulate membership queries for any DNF A using calls to QEX (h, D).
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By Lemma 6, we can assume without loss of generality that all of the calls to
QEX (h,D) occur at the beginning of the M’s program. Take f(z) = 0 and g(x) =
5P A o A aér, where ¢ = 1 if and only o = d. The second function is zero for all
assignments to = except ¢ = (cy,...,¢,). We want to use the simulator M to find
h(c) for h € {f,g}. The simulator will first make ¢ calls to QEX (h, D) giving

Sh=">_ VD(z)- - D)lai, hlz1), -y 20, h(z0)).

After that, the computation for both f and ¢ is the same in the sense that both
computations consist of a series of applications of Rys to Sp. The superpositions Sy
and S, differ only in configurations

|21, h(21), ..., 2, h(z))

where one of the z; is c.
Therefore

Sf = Sg + Efg,

where

Brg= Y /D(z1)- D(zo)lz1, f(21),- . 20, f(20)

(Fi)zi=c
— S VD) DGl o) a().
(Fi)zi=c

If W represents the sequence of transitions after the initial calls to QEX(f, D), then
at the end of the computation by M we observe Obs(WS¢) and Obs(W S,) for f and

g, respectively. By Lemma 8
[\/Obs(WSy) — \Obs(WS,)
< Obs(WEy,)

< [WEy,l*

= [|Ey*

=2 Z (\/D(Zl)D(Zt))
(Fi)zi=c

=2(1-(1-D(0)")

< 2tD(e).

For any fixed D, any fixed polynomial p;, and large enough n, almost all choices
of ¢ are such that D(c) < 1/pi(n). For all such ¢ and appropriately chosen p; the
observations Obs(WSy) and Obs(WS,) are indistinguishable. i

While it is not possible to simulate membership queries in polynomial time given
only a quantum example oracle, it is a simple matter to simulate a uniform quantum
example oracle with membership queries.

LEMMA 9. For every Boolean function f, QEX(f,U) can be simulated by a QTM
making a single call to MEM(f).

Proof: QEX(f,U) can be simulated by applying the Fourier transform F to the tape
|0) and then calling M EM(f). O

Thus a membership oracle for f is strictly more powerful than a uniform quantum

example oracle for f.
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7. Concluding Remarks. We have defined the notion of a quantum example
oracle and argued that it is a natural quantum extension of the standard PAC example
oracle. We then showed the learnability of DNF (and PT';) with respect to uniform
given access to such an oracle. Such an oracle is also shown to be weaker (with respect
to uniform) than a membership oracle.

While we believe that these results are interesting theoretically, like many oracle
results in complexity theory the practical significance of our results are not clear. Our
algorithm at the very least offers some potential speed-up over an implementation of
the unmodified Harmonic Sieve for learning DNF from a membership oracle on a
quantum computer. Also, while we do not currently see how to implement a quantum
example oracle without recourse to a membership oracle, it is conceivable that there
may be some way to build a quantum example oracle from something (much) less than
a full membership oracle, which could add substantially to our algorithm’s relevance to
practical machine-learning problems. Finally, we hope that these results may provide
stepping stones toward answering the larger question of whether DNF can be learned
by a QTM from a standard PAC example oracle. A positive answer to this question
has potentially great practical significance.

An earlier version of this paper [14] claimed that our quantum algorithm would
learn DNF in a generalized persistent noise model. This propagated an erroneous
claim by Jackson that the Harmonic Sieve was noise-tolerant [22]. While a modified
version of the Harmonic Sieve has subsequently been shown to tolerate persistent
classification noise [23], we do not consider the quantum extension of that algorithm
in this paper, leaving this problem open for further study.
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seminar on quantum computation.
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