Learnability Beyond AC’

Jeffrey C. Jackson* Adam R. Klivans'
Department of Mathematics and Computer Science Department of Mathematics
Duquesne University MIT
Pittsburgh, PA 15282 Cambridge, MA 02139
jackson@mathcs.duq.edu klivans@math.mit.edu

Rocco A. Servediot
Division of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138
rocco@deas.harvard.edu

Abstract

We give an algorithm to learn constant-depth polynomial-size circuits augmented with ma-
jority gates under the uniform distribution using random examples only. For circuits which
contain a polylogarithmic number of majority gates the algorithm runs in quasipolynomial
time. This is the first algorithm for learning a more expressive circuit class than the class AC°
of constant-depth polynomial-size circuits, a class which was shown to be learnable in quasipoly-
nomial time by Linial, Mansour and Nisan in 1989. Our approach combines an extension of
some of the Fourier analysis from Linial et al. with hypothesis boosting. We also show that
under a standard cryptographic assumption our algorithm is essentially optimal with respect to
both running time and expressiveness (number of majority gates) of the circuits being learned.

*This material is based upon work supported by the National Science Foundation under Grant No. CCR-9877079.
tSupported in part by NSF grant CCR-97-01304.
fSupported by NSF Grant CCR-98-77049 and by an NSF Mathematical Sciences Postdoctoral Research Fellowship.

1 Introduction

1.1 Motivation

In his seminal 1984 paper “A Theory of the Learnable” Valiant proposed the Probably Approxi-
mately Correct (PAC) model of learning in an attempt to understand what programs a machine
can acquire without explicit instruction. A central question that arises from this paradigm is the
following: what is the most expressive class of Boolean functions that can be learned by a compu-
tationally efficient algorithm? As stated by Valiant, “The results of learnability theory ... indicate
the maximum granularity of the single concepts that can be acquired without programming” [28].
Working towards this goal, researchers in computational learning theory have developed many al-
gorithms for learning various classes of Boolean circuits. This paper gives a new algorithm to
learn the most expressive class of Boolean circuits considered to date for a well-studied variant of
Valiant’s model.

1.2 Previous Results

In Valiant’s original model, a class of functions is said to be efficiently learnable if there is a
polynomial-time algorithm which succeeds given labeled examples drawn from an arbitrary prob-
ability distribution. Unfortunately, few classes are known to be efficiently learnable in this sense.
Hence researchers have considered algorithms which run in superpolynomial time and/or succeed
under specific distributions on examples such as the uniform distribution.

Several subexponential time algorithms are known for learning interesting classes in the distribution-
free model where the learning algorithm must succeed under an arbitrary probability distribution.
Ehrenfeucht and Haussler [13] and Blum [5] have given n!08%
decision trees over n Boolean variables. Improving on results of Bshouty [9] and Tarui and Tsukiji
[27], Klivans and Servedio [21] have recently given an algorithm for learning s-term Disjunctive
Normal Form (DNF) formulae in time gn'/?logslogn

Stronger results can be achieved by requiring the learning algorithm to succeed only when given
examples drawn from the uniform distribution on the Boolean cube. One such uniform distribution
learning algorithm is Jackson’s Harmonic Sieve algorithm for learning s-term DNF formulae [17].
The Sieve runs in poly(n,s) time but requires that the learning algorithm be allowed to make
membership queries for the value of the target function on specified points. Another well-known
uniform distribution learning algorithm is the algorithm of Linial et al. [23] which learns size-s
depth-d AND/OR/NOT circuits in time n(°89)* without using membership queries. This result
is noteworthy for several reasons: (1) The class AC? of constant-depth polynomial-size circuits is
highly expressive relative to other circuit classes studied in learning theory — note that DNF formu-
lae are ACY circuits of depth 2. (2) Kharitonov [19] has given compelling evidence that the Linial et

time algorithms for learning size-s

al. algorithm is essentially optimal by showing that an n(1°8 9”@ _time algorithm for learning size-s
depth-d circuits under uniform would contradict a plausible cryptographic assumption about the
hardness of integer factorization.

1.3 Our Results

We give the first algorithm to learn constant-depth circuits augmented with majority gates. Al-
though Kharitonov proved that the running time of Linial et al.’s algorithm is essentially optimal
for constant-depth AND/OR/NOT circuits, our results show that it is possible to learn a strictly

more expressive class of circuits in the same amount of time.! We also show that under Kharitonov’s
cryptographic assumption our algorithm is essentially optimal with respect to both running time
and expressiveness (number of majority gates) of the functions being learned.

We believe that augmenting constant depth circuits with a limited number of majority gates is
an interesting and natural extension of AC’. Such circuits have been studied by several researchers
in complexity theory [1, 3, 4] and represent a significant extension of AC’ (recall that a single
majority of n variables requires depth-d circuits of size on'/¢ [16]). Our main positive result for
these circuits can be stated informally as follows (a precise statement is given in Section 3.3):

Theorem 1 Quasipolynomial (2P?W1°8™) size constant-depth circuits which contain a polylogarith-
mic number of majority gates can be learned under the uniform distribution in quasipolynomial time
from random examples only.

As we allow constant depth circuits to contain more and more majority gates we move toward
the circuit complexity class TC? which can be viewed as AC? augmented with a polynomial num-
ber of majority gates. TC® is a highly expressive class which contains functions such as integer
multiplication and division — indeed it is currently conceivable that all of #P is contained in non-
uniform TC®. Naor and Reingold [25] have constructed pseudo-random functions in TC? (under a
widely held cryptographic assumption) and thus it seems unlikely that effective learning algorithms
can be given for TCY. Using results from [25] we establish the following lower bound for learning
which holds under Kharitonov’s plausible cryptographic assumption (a precise statement is given
in Section 4):

Theorem 2 Any algorithm that even weakly learns depth-5 circuits containing more than a polylog-
arithmic number of majority gates under the uniform distribution must run in more than quasipoly-
nomial time, even if membership queries are allowed.

Theorems 1 and 2 together give a fairly complete picture of the complexity of learning constant
depth circuits which contain majority gates.

1.4 Our Approach

The learning algorithm of Linial et al. for AC® is based on the fact that any function computed
by a constant-depth polynomial-size circuit can be well approximated by the low-order terms in its
Fourier representation. More precisely, the main lemma, of [23] shows that any AC® function on n
variables can have at most an e fraction of its Fourier spectrum weight on sets which contain more
than polylog(n/e) variables. This property need not hold for circuits which contain majority gates;
Bshouty and Tamon [11] have shown that the majority function itself has an €(1/4/n) fraction of
its Fourier spectrum weight on sets of size (y/n). Hence a different approach seems to be required
for circuits which contain majority gates.

Our algorithm learns using a stagewise approach based on hypothesis boosting. Boosting is
a well known technique in computational learning theory which can be used to transform a weak
learning algorithm (which constructs an approximator to the function being learned whose error
is only slightly less than 1/2) into a strong learning algorithm which generates a highly accurate
hypothesis. Boosting algorithms accomplish this by running the weak learning algorithm repeatedly
on a sequence of carefully constructed distributions.

!We show in Section 3.4 that our algorithm runs slightly faster asymptotically than the Linial et al. algorithm for
learning standard constant-depth AND/OR/NOT circuits.

We show (Lemma 6) that for any function f in our class and any distribution D which is not
too far from uniform, there exists a low-order parity function which is weakly correlated with f.
Since this parity depends on only a small number of variables it can be found using exhaustive
search. As we show in Section 3, the size bound for this parity — and hence the running time
of our algorithm — depends directly on the extent of D’s deviation from the uniform distribution.
Fortunately, boosting algorithms are known which have the property that if the initial distribution
over examples is uniform then the distributions constructed by the boosting algorithm will not
deviate too far from uniform. Using such a boosting algorithm we transform our weak learning
algorithm into a strong learning algorithm which generates a highly accurate approximator to the
unknown target function.

The form of the hypothesis output by our algorithm is a majority over quasipolynomially many
parity functions. Since the Harmonic Sieve is already capable of learning this class in quasipolyno-
mial time [17], it is natural to ask whether our new algorithm is learning a class that could not be
learned by the existing Sieve. Several points should be noted. First, unlike the Sieve, our algorithm
does not require membership queries, which is a significant advantage. Second, while our results
imply that the Sieve is capable of learning AC? circuits augmented with a polylogarithmic number
of majority gates, this was not known prior to the analysis contained in this paper. In particular,
the most general prior results [17] showed that the Sieve was capable of learning a majority of
s parity functions in time polynomial in s. However, since even the class AC? itself is known to
contain a linear-size circuit C such that any majority of parities representing C' exactly contains
exponentially many distinct parity functions [22], these prior results do not imply our results.

1.5 Learning Other Extensions of AC’

Another natural question raised by our work is whether it is possible to efficiently learn constant-
depth circuits which contain a limited number of gates other than majority. In Section 5 we consider
learning constant-depth AND/OR/NOT circuits augmented with a single additional gate at the
root which may be either a parity gate, a MOD,, gate for prime p > 2, or a threshold gate which
computes an arbitrary weighted majority of its inputs. We give evidence that with respect to known
techniques each of these three simple extensions of AC? may be difficult to learn.

1.6 Organization

In Section 3 we give our algorithm for learning constant-depth circuits with majority gates. In
Section 4 we give cryptographic hardness results for learning constant-depth circuits with majority
gates. Section 5 discusses prospects for learning other extensions of AC’.

2 Preliminaries

We write [n] to denote the set {1,...,n}, U to denote the uniform distribution over {—1,1}"
and logz to denote logy z. We view Boolean functions as mappings from {—1,1}" to {—1,1}
where —1 represents TRUE and 1 represents FALSE. Unless otherwise indicated probabilities and
expectations are with respect to U.

Recall that AC? is the class of constant-depth polynomial-size circuits composed of unbounded
fan-in AND, OR and NOT gates. The majority function M AJ : {—1,1}" — {—1,1} is defined by
MAJ(z) = sign(z; + - - - +) which is 1 if and only if £ + - - - + z,, > 0. We write MAC® to denote
the class of constant-depth polynomial-size circuits which have a single unbounded fan-in majority
gate at the root, and we refer to such circuits as majority of ACC.

For A C [n] the parity function x4 : {—1,1}" — {—1,1} is defined by xa(z) = [[;c 4 =i. As is
well known, with inner product (f,g) = E[fg] and norm ||f|| = /E[f?] the 2" parity functions
{Xx4} ac[n] form an orthonormal basis for the vector space of real-valued functions on {—1,1}". Con-
sequently every real-valued function f: {—1,1}" — {—1,1} can be uniquely expressed as a linear
combination f(z) = 3 4cin f(A)xa(z). The coefficients f(A) are known as the Fourier spectrum

of f. Orthonormality implies that f(A) = (f,x4) and thus f(A) measures the correlation between
f and x 4. Orthonormality also implies Parseval’s identity, which states that for every real-valued
function f we have E[f?] = > ACH] F(A)2. For Boolean functions we thus have > AC[H] f(A)?2=1.
The following easily verified fact 1s from [23]:

Fact 3 For any Boolean function f and real-valued function g,

Pr(f(x) # sign(g(x))] < E[(f(2) — 9(2))*] = D (F(4) - §(A))*.
AC[n]

The equality follows from Parseval’s identity and the linearity of the Fourier transform.
Finally we note the following simple but useful fact: for any distribution D, if f, h are +1-valued
functions then Prp[f = h]| = 1/2 + Ep[fh]/2.

2.1 The Learning Model

The learning model we consider is a well-studied distribution-specific variant of Valiant’s Probably
Approximately Correct (PAC) learning model [28]. Let f be a Boolean function and D a probability
distribution on {—1,1}". We write EX(f,D) to denote a random example oracle which when
invoked outputs a labeled example (z, f(z)) where z € {—1,1}" is chosen according to D.

Let C be a class of Boolean functions on {—1,1}". Let f € C be an unknown member of C and
let A be a learning algorithm which takes as input accuracy and confidence parameters ¢, and can
invoke the oracle EX(f, D). We say that A learns C under the uniform distribution if A satisfies
the following condition: for all 0 < €,d < 1, if A is given access to EX (f,U) then with probability
at least 1 — ¢ A outputs a hypothesis h : {—1,1}" — {—1,1} such that Pr[f(z) = h(z)] > 1 —e.

In order to obtain our uniform distribution learning algorithm we will need to consider weak
learning algorithms which work for a broader range of distributions but can only generate hypothe-
ses which are slightly more accurate than random guessing. For v > 0 we say that A is a weak
learning algorithm for C' with advantage -y if A satisfies the following condition: for any distribution
D, for any 0 < § < 1, if A is given access to EX(f, D) then with probability at least 1—4 A outputs
a hypothesis h : {—1,1}" — {—1,1} such that Prp[f(z) = h(z)] > 1/2 + 7. As we will see the
advantage v can depend on parameters such as n, the size of a circuit for f, and the Ly, norm of
the distribution D.

A boosting algorithm B is an algorithm which satisfies the following condition: for any Boolean
function f and any distribution D over {—1,1}", if Bis given 0 < ¢,d < 1,0 < y < 1/2, an example
oracle EX(f,D) and a weak learning algorithm WL with advantage +y, then with probability at least
1 — ¢ algorithm B outputs a hypothesis h such that Prp[f(z) = h(z)] > 1 — e. We say that a
canonical boosting algorithm B is a boosting algorithm which has the following iterative structure:

o At stage 0 B starts with Dy = D and uses WL to generate with high probability a hypothesis
ho satisfying Prpy[f(z) = h(z)] > 1/2 + 7.

e At stage ¢ B does two things: (1) constructs a new distribution D; which favors points where
the previous hypotheses hy,...,h;—1 do poorly at predicting the value of f, and (2) runs WL

4

using the simuated example oracle EX(f,D;) to produce with high probability a hypothesis
h; satisfying Prp,[f(z) = hi)] > 1/2 + 7.

e Finally, after doing this repeatedly for some number T' of stages, B combines the hypotheses
ho,...,h7_1 in some way to obtain with high probability a strong final hypothesis h satisfying
Prp[f(z) = h(z)] > 1 —e.

3 The algorithm

We first present a weak learning algorithm for the class of constant-depth circuits with a single
majority gate at the root (Section 3.1). In Section 3.2 we show how to boost this weak learning
algorithm into a strong uniform distribution learning algorithm for MACC. In Section 3.3 we observe
that our algorithm can in fact be used to learn constant-depth circuits which contain several
majority gates. Finally in Section 3.4 we show that the new algorithm for MAC? can be used
to improve previous results of Linial et al. for learning and approximating ACC.

3.1 Weak learning MAC’ under smooth distributions

Let f: {—1,1}" — {—1,1} be computed by an MAC? circuit of size s and depth d + 1, so f =
MAJ(Ch,...,Ct) where t < s and each C; : {—1,1}" — {—1,1} is a circuit of depth at most d
and size at most s. Without loss of generality we can assume that Ci(z) + ... + Ci(z) # 0 for
all z € {—1,1}". (If this sum is ever zero we can reexpress f as MAJ(C,...,C;,C1,...,C1).
This leaves the depth unchanged and at most doubles the size which makes no difference for our
asymptotic results.) We recall the “discriminator lemma” of Hajnal et al. [15]:

Lemma 4 Let H be a class of +1-valued functions and let f : {—1,1}" — {—1,1} be expressible as
MAJ(hy,...,h) where each h; € H and hy(z)+---+hi(z) # 0 for all z. Then for any distribution
D over {—1,1}" there is some h € H such that |Ep[fh]| > 1/t.

Hence for any distribution D there is a size-s depth-d circuit Cp such that Ep[fCp] > 1/s.

Our goal is to show that as long as D does not assign too much probability weight to any
single point then there is some parity function x4 (where A is small as described below) which has
nonnegligible correlation with f under D. Toward this end we use the main lemma of Linial et al.
[23]:

Lemma 5 Let C be a circuit of size s and depth d. Then for any integer k,
3 O(4)? <2527 R,
|A|>k

Fix a distribution D on {—1,1}". Let k = (2010g(85%2" Loo(D)))? and let g : {—1,1}" — R be

defined by g(z) = 3, 4/, Op(A4)xa(z). Then by Parseval’s identity and Lemma 5,

E[(g(z) — Op(2))*] = Y (3(A) — Cp(4)* = 3 Cp(A) < s mi D)
AC[n) |AI>k i =

Since D(z) < Loo(D) for all z, we have Ep[(g(z) — Cp(x))?] < 1/4s2. Since Ep[X?] > Ep[X]? for
any distribution D and any random variable X, we have Ep||g(z) — Cp(z)|] < 1/2s. Thus

Ep([fg] = Ep[fCp]+ Ep[f(g— Cp)]
> EplfCp] — Epllg — Cpl]
> 1/s—1/2s=1/2s (1)

where the first inequality holds because the range of f is {—1,1}. Thus the real-valued function g
has nonnegligible correlation with the MAC? function f under D.
Using linearity of expectation, we have

> 1Co(A)l|Eplfxall > Y Co(A)Eplfxal = Eplf Y Cp(A)xal = Eplfg] > 1/(2s).
|Al<k |Al<k |A|<k

Since each Fourier coefficient C'p(A) has magnitude at most 1, we have that D o|Al<k |Cp(A)] is at

most n*, and thus |Ep[fxa]| > 1/(2sn*) for some |A| < k. Thus we have proved the following
lemma:

Lemma 6 There is a subset A C [n] with |A| < k such that |Prp[f(z) = xa(z)] — 3| > 1/(4sn*)
where k = (201og(8s32" Lo (D)))4.

We can now establish the main result of this section:

Theorem 7 Let C 4 be the class of MAC? circuits of size s and depth d + 1 over {—1,1}". Let D
be any distribution and let k = (201og(8s°2"Loo(D)))%. There is a weak learning algorithm for Cs 4
with advantage v = 1/(8sn*) which runs in time poly(n*,log1/8). The algorithm takes § and y as
input and outputs a hypothesis which is either xa or —xa for some |A| < k.

Proof: Lemma 6 implies that for some subset A of size at most k either x4 or —x4 will be
the desired weak hypothesis. The weak learning algorithm does an exhaustive search over all
A C [n] in order of increasing size. For each candidate parity function x4 the algorithm draws a
sample of labeled examples from EX (f, D) and uses this sample to compute an empirical estimate
of Prp[f(z) = xa(z)].- Suppose that the candidate parity being tested is x4s. Using Chernoff
bounds it can be shown that if a sample of size poly(1/v,log1/¢’) is used then with probability
at least 1 — ¢’ the empirical estimate of Prp[f(z) = xar(z)] will differ from the true value by at
most /2 = 1/(16sn*). The algorithm halts and outputs x4 (or —x /) if and only if the empirical
estimate p satisfies [p—1/2| > 3v/2 = 3/(16sn*). It is easily verified that if §' is taken to be /2" then
with probability at least 1 — § this algorithm runs in time poly(sn¥,log(2"/§)) = poly(n*,log1/6)
and succeeds as stated in the theorem. [|

3.2 Learning MAC® under the uniform distribution
To obtain a strong learning algorithm we will use the following theorem whose proof can be found

in [20, 26]:

Theorem 8 There exists a canonical boosting algorithm B which, given input parameters 0 < €,6 <
1, 0 < v < 1/2, an example oracle EX(f,U) and a weak learning algorithm WL with advantage -,
has the following properties:

e B runs for T = O(1/7%€?) stages;

e Each distribution D; generated by B satisfies Loo(D;) = O((1/€)27");

2Similar results can be obtained from other boosting algorithms such as [10, 12, 14]. Each of these boosting
algorithms gives slightly different bounds on T' and Lo (D;) but these differences in the bounds do not affect the
running time of our overall algorithm.

e The running time of B is polynomial in 1/7, 1/e, log1/é, n, and t, where t is the running
time of WL given access to EX(f,U);

e The final hypothesis output by B is a majority h = M AJ(h1,...,hp_1) of the hypotheses h;
generated by WL.

We use this boosting algorithm in conjunction with the weak learning algorithm of Section
3.1 to construct a quasipolynomial time uniform distribution learning algorithm for MAC®. Let
€ > 0 be the desired accuracy and confidence to which we will learn the MAC® circuit of size
s and depth d + 1. Every distribution D; constructed by B satisfies Loo(D;) = O((1/€)27 ™).
For each such distribution D; Theorem 7 implies that our weak learning algorithm runs in time
poly(n¥,log(1/8)) and outputs a hypothesis with advantage v = 1/(8sn*) where k = O(log®(s/e)).
Theorem 8 implies that after O(1/y2¢?) iterations with probability 1 — § B outputs a hypothesis h
such that Pry[f(z) = h(z)] > 1 — e. This hypothesis is a majority of O(1/y%€2) parity functions,
each of size at most k.

Note that although we assumed that the value of v is known to the boosting algorithm, this
assumption can be removed by using a standard “guess-and-double” technique. The idea is to start
with a constant-value guess for v (e.g. ¥ = 1/4) and then run the algorithm with this value. If the
algorithm fails to construct a strong hypothesis (which is easily tested), the value of «y is halved
and the algorithm is run again. A standard analysis which we omit shows that this process incurs
at most a polynomial increase in the run-time bound and hypothesis size. Thus the overall learning
algorithm does not need to be given size or depth bounds of the MAC? circuit to be learned.

Summarizing the above discussion, we have the following theorem:

Theorem 9 Let C, 4 be the class of MAC? circuits of size s and depth d+1 over {—1,1}". The above
algorithm learns C; g to accuracy e under the uniform distribution in time poly(nlogd(s/e), log1/6).3

3.3 Learning constant-depth circuits with majority gates

Using the following result of Beigel [3] we can extend our learning result for MAC? to circuits which
contain several majority gates:

Theorem 10 Let f be computed by a circuit of size s and depth d which contains m majority
gates. Then f is computed by a circuit of size 2m(O(og N and depth d + 2 which contains a
single majority gate at the root.

Combining Theorems 9 and 10 we obtain our main learning result:

Theorem 11 The class of size-s depth-d circuits which contain m majority gates can be learned

to accuracy € under the uniform distribution in time nO{(m{log $)24* +log(1/€)) 1)

The most interesting setting of parameters in Theorem 11 is s = 2P°Wl°8" d — O(1) and m =
polylog(n) which gives Theorem 1 as stated in the introduction.

3The analysis of the running time dependence on the confidence parameter § is standard and omitted for clarity.

3.4 Discussion

Theorem 9 can be used to give a slight improvement on results of Linial et al. for learning and
approximating constant-depth circuits. Since a majority gate can easily simulate an AND or OR
gate by padding it with extra inputs, for any size-s depth-d AND/OR/NOT circuit C it is possible
to reexpress C' as an MACY circuit MAJ(Cy,...,C;) in which each C; has size at most s and depth
at most d — 1. Applying Theorem 9 we see that any size-s depth-d AND/OR/NOT circuit can
be learned using our algorithm in time nOUog~"(s/9)) This is in contrast with the Linial et al.
algorithm which runs in time nOQog?(s/€)

By viewing AND/OR/NOT circuits as MAC? circuits in this way, our algorithm also gives
the best known upper bound on the degree of polynomial threshold functions which approximate
constant-depth circuits. A polynomial threshold function is a Boolean function defined by a real-
valued multivariate polynomial P(z). The Boolean function takes value 1 on z if and only if P(z) >
0.

As mentioned in Section 3.2, the final hypothesis of our algorithm is a majority of parities of at
most k variables each. Since any Boolean function on k variables can be computed by a polynomial
of degree at most k, we have the following corollary:

Corollary 12 Let f be computed by a circuit of size s and depth d. Then there is a polynomial
threshold function of degree O(log?~1(s/€)) which agrees with f on all but an € fraction of inputs.

The Linial et al. results imply the existence of a polynomial threshold function approximator of
degree O(log%(s/€)).

Aspnes et al. [1] have given tight bounds on the accuracy with which polynomial threshold
functions of a given degree can approximate the parity function. Using their results together with
the fact that a depth-d circuit of size s can compute parity on log?~! s variables, one can show

Observation 13 There is a circuit C of size s and depth d such that any polynomial threshold
function of degree O(logd/2 s) must disagree with C on more than an e = 1/s fraction of inputs.

Thus the d — 1 exponent in our upper bound of Corollary 12 is worse than the best possible (d/2)
exponent by less than a factor of two.

Finally, we observe that as a corollary of Theorem 11 we obtain a quasipolynomial time algo-
rithm for learning an intersection of polylog(n) halfspaces under the uniform distribution on the
Boolean cube, under the restriction that each halfspace is defined by integer coefficients of mag-
nitude poly(n). This is in contrast with a polynomial time algorithm by Baum [2] for learning an
intersection of two origin-centered halfspaces under a restricted class of distributions which includes
the uniform distribution. (Vempala [29] gave a polynomial-time algorithm to learn an intersection
of logn/loglog n halfspaces under “near-uniform” distributions on the unit ball, but his algorithm
does not apply to the uniform distribution on the Boolean cube.)

4 Cryptographic Lower Bounds

In contrast with the positive learning results of Section 3, in this section we give cryptographic
hardness results for learning circuits with majority gates. Our results, which are based on the
presumed intractability of factoring Blum integers, suggest that the time bounds of Theorem 11
are essentially optimal even for weak learning algorithms which are allowed to make membership
queries.

Definition 14 Let N = P - Q be chosen by uniformly selecting P and Q to be two n/2-bit primes
such that P = Q = 3 mod 4 (we call such an N a random n-bit Blum integer). Let e(n) and t(n)
be real-valued functions. We say that a probabilistic t(n)-time algorithm A e-factors if

Pr[A(N) € {P,Q}] > €(n)

where N = P-Q is a random n-bit Blum integer. The (t(n), ¢(n))-factoring assumption states that
there is no probabilistic poly(t(n))-time algorithm which poly(e(n))-factors.

After decades of intensive research on integer factorization, the fastest factoring algorithms
known for n-bit Blum integers run in time 20(n'®) " Thus the following assumption is viewed as
being quite plausible [19]: there is some absolute constant o > 0 such that the (2"*,27"")-factoring
assumption holds.

Definition 15 Let I(n) be an index set and let {f; : {—1,1}" — {=1,1}}icr(n) be a family of
functions. We say that {fi}icr(n) is an (t(n),e(n))-secure pseudorandom function family if the
following conditions hold:

e there is a probabilistic poly(n)-time algorithm which selects a uniform random i € I(n);

e there is a deterministic poly(n)-time algorithm which given i € I(n) and x € {—1,1}" outputs
fz(x)7

e for any probabilistic t(n)-time oracle algorithm A,

Pr [Afi outputs 1] — Pr [AF outputs 1]| <
iEI(rn)[outputs 1] Fe;-'n[outputs 1]| < e(n)

where Fy, is the family of all Boolean functions F': {0,1}™ — {0,1}.
The following theorem follows from [25]:

Theorem 16 There is an index set I(n), a function family {f; : {0,1}" — {-1,1}}icr(n), and a
fized constant 8 > 0 such that

e Each function f; : {—1,1}" — {—1,1} is computed by a depth-5 circuit consisting of n”
majority gates;

o If {fitici(n) is not a (t(n),e(n))-secure pseudorandom function family then there is a proba-
bilistic poly(t(n)/e(n))-time algorithm which poly(e(n)/t(n))-factors.

The following theorem about hardness of learning follows:

Theorem 17 Suppose that there is a membership query learning algorithm A for the class {f; :
{=1,1}" = {=1,1} }se1(n) of Theorem 16 which runs in time t(n) and outputs a hypothesis h such
that Prlh(z) # f(z)] < 3 — e(n). Then the (t'(n),€ (n))-factoring assumption is false for some
t'(n) =poly(t(n)/e(n)) and €(n) =poly(e(n)/t(n)).

We can apply Theorem 17 to obtain hardness results for learning constant-depth circuits with
majority gates:

Theorem 18 Suppose that the (2™ ,27"")-factoring assumption holds for some fired & > 0. Then
any membership query algorithm that weakly learns depth 5 circuits consisting of m majority gates
to accuracy € = 1/2 — 2™ must have time complezity w(2ma/ﬂ), where B is the constant from
Theorem 16.

Proof: From Theorem 16 we know that every function fi,ml ;8 can be computed by a depth 5 circuit
consisting of m majority gates. If A runs in time 9m*/? and weakly learns { fi’ml/ﬁ} to accuracy

1/2— 2-m" then A can weakly learn {fin} to accuracy 1/2—27"" in time 2"". The result follows
by Theorem 17. [

As a corollary we have that our algorithm for learning constant-depth circuits with polylog-
arithmically many majority gates is essentially optimal in terms of its time complexity and the
number of majority gates which it can handle.

Corollary 19 Fiz any constants d > 5 and € > 0.

1. Our learning algorithm from Section 3 learns depth-d poly(n)-size circuits with log® n majority
gates to accuracy € in time 2008 n)®
2. Assuming that the (2" ,27™")-factoring assumption holds for some fized o > 0, any algorithm

even using membership queries) which learns depth-d circuits consisting of log® n majorit
g g g joTiLy

—(log n)©) log n) (%)

gates (even to accuracy 1/2 — 2) must run in time 2(

3. Assuming that the (2™°,27"")-factoring assumption holds for some fired o > 0, then for
any m = w(polylog(n)) there is no quasipolynomial-time algorithm (even using membership

queries) which learns depth-d circuits consisting of m majority gates (even to accuracy 1/2 —
2-m®W)

5 Learning other extensions of AC’

Given our results for learning AC® augmented with majority gates, a natural question is whether AC®
circuits augmented with other expressive gates can be similarly learned. A first step in this direction
is to investigate the learnability of constant-depth polynomial-size circuits with a single parity gate,
MOD, gate, or threshold gate at the root. We refer to these three circuit classes as parity of AC?,
MOD, of AC® and threshold of AC’. While we have not been able to prove cryptographic hardness
results for these three classes, as described below we believe that substantially new techniques will
be required to obtain learning algorithms for these classes.

The most powerful algorithms known for learning Boolean circuits under the uniform distribu-
tion are based on identifying large Fourier coefficients. Indeed, the only classes for which uniform
distribution quasipolynomial time learning algorithms are known are classes such that for each
f € C there is some Fourier coefficient such that |f4| > 1/nPo¥1°8() (Our analysis in Section 3
implies the existence of such a Fourier coefficient for any constant-depth circuit with polylog(n)
majority gates.) For parity of AC? it can be shown that all Fourier coefficients may be exponentially
small. This is almost true of MOD), of AC? as well: the only exception is the constant coefficient,
and we argue that existing methods are not powerful enough to produce anything but weak learning
of such functions.* Thus it appears that Fourier techniques will not suffice to learn parity of AC®
or MOD, of AC.

“Recall that under the uniform distribution weak learning is not always equivalent to strong learning, e.g. the
class of monotone Boolean functions is weakly but not strongly learnable under uniform [18].

10

For threshold of AC®, we give evidence that our algorithm from Section 3 will not work by
constructing a threshold of AC® function with the following property: under the uniform distribution
on {—1,1}" each input to the threshold gate has only an exponentially small correlation with the
output of the circuit. (Recall that our algorithm’s proof of correctness relies on the fact that for
a majority of ACY circuit there is always some input to the majority gate which has nonnegligible
correlation with the output.)

We defer these proofs and constructions to the appendix.

References

[1] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of voting polynomials.
Combinatorica, 14(2):1-14, 1994.

[2] E. Baum. A polynomial time algorithm that learns two hidden unit nets. Neural Computation,
2:510-522, 1991.

[3] R. Beigel. When do extra majority gates help? polylog(n) majority gates are equivalent to
one. Computational Complezity, 4:314-324, 1994.

[4] R. Beigel, N. Reingold, and D. Spielman. Pp is closed under intersection. Journal of Computer
and System Sciences, 50(2):191-202, 1995.

[6] A. Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing
Letters, 42(4):183-185, 1992.

[6] A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning
noisy linear threshold functions. Algorithmica, 22(1/2):35-52, 1997.

[7] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the vapnik-
chervonenkis dimension. Journal of the ACM, 36(4):929-965, 1989.

[8] J. Bruck. Harmonic analysis of polynomial threshold functions. SIAM Journal on Discrete
Mathematics, 3(2):168-177, 1990.

[9] N. Bshouty. A subexponential exact learning algorithm for dnf using equivalence queries.
Information Processing Letters, 59:37-39, 1996.

[10] N. Bshouty and D. Gavinsky. On boosting with optimal poly-bounded distributions. In
Proceedings of the Fourteenth Annual Conference on Computational Learning Theory / Fifth
European Conference on Computational Learning Theory, pages 490-506, 2001.

[11] N. Bshouty and C. Tamon. On the fourier spectrum of monotone functions. Journal of the
ACM, 43(4):747-770, 1996.

[12] C. Domingo and O. Watanabe. Madaboost: a modified version of adaboost. In Proceedings of
the Thirteenth Annual Conference on Computational Learning Theory, pages 180-189, 2000.

[13] A. Ehrenfeucht and D. Haussler. Learning decision trees from random examples. Information
and Computation, 82(3):231-246, 1989.

[14] Y. Freund. Boosting a weak learning algorithm by majority. In Proceedings of the Third
Annual Workshop on Computational Learning Theory, pages 202-216, 1990.

11

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]

A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of bounded
depth. Journal of Computer and System Sciences, 46:129-154, 1993.

J. Hastad. Computational Limitations for Small Depth Circuits. MIT Press, Cambridge, MA,
1986.

J. Jackson. An efficient membership-query algorithm for learning dnf with respect to the
uniform distribution. Journal of Computer and System Sciences, 55:414-440, 1997.

M. Kearns, M. Li, and L. Valiant. Learning boolean formulas. Journal of the ACM, 41(6):1298—
1328, 1994.

M. Kharitonov. Cryptographic hardness of distribution-specific learning. In Proceedings of the
Twenty-Fifth Annual Symposium on Theory of Computing, pages 372-381, 1993.

A. Klivans and R. Servedio. Boosting and hard-core sets. In Proceedings of the Fortieth Annual
Symposium on Foundations of Computer Science, pages 624-633, 1999.

A. Klivans and R. Servedio. Learning dnf in time 20(n'®) In Proceedings of the Thirty- Third
Annual Symposium on Theory of Computing, pages 258-265, 2001.

M. Krause and P. Pudlak. On the computational power of depth 2 circuits with threshold and
modulo gates. In Proceedings of the Twenty-Sizth Annual Symposium on Theory of Computing,
pages 48-57, 1994.

N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform and learn-
ability. Journal of the ACM, 40(3):607-620, 1993.

F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-Holland,
New York, 1977.

M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random func-
tions. In Proceedings of the Thirty-Fighth Annual Symposium on Foundations of Computer
Science, pages 458-467, 1997.

R. Servedio. Efficient Algorithms in Computational Learning Theory. PhD thesis, Harvard
University, 2001.

J. Tarui and T. Tsukiji. Learning dnf by approximating inclusion-exclusion formulae. In
Proceedings of the Fourteenth Conference on Computational Complexity, pages 215-220, 1999.

L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.

S. Vempala. A random sampling based algorithm for learning the intersection of halfspaces.
In Proceedings of the 38th Annual Symposium on Foundations of Computer Science, pages
508-513, 1997.

Z. L. Zhang. Complexity of symmetric functions in perceptron-like models. Master’s thesis,
University of Massachusetts at Amherst, 1992.

12

A Bounds on the Fourier coefficients of Extensions of AC’

A.1 Parity of AC°

The inner product mod 2 function 1P, : {0,1}?" — {0,1} is defined by IP(z) = z172 + 324 +
...+ x9p 172, mod 2. This function is computed by a depth 2 circuit with n AND gates on the
bottom level which feed into a single parity gate at the root. It is known [8, 24] that every Fourier
coefficient of this function satisfies |I/]\32(S)| =1/2".

We note that the I P, function can also be used to show (without any cryptographic assumptions)
that our learning algorithm from Section 3 will not run in quasipolynomial time on depth-4 circuits
with more than a polylogarithmic number of majority gates. Using majority gates to compute
parity, the I P, function on m variables can be computed by a depth-4 size-m? circuit which contains
m majority gates. Let f,, : {0,1}" — {0,1} denote the inner product mod 2 function on the first
m variables z1,...,Z,. For m = w(polylog(n)), the first execution of our weak learning algorithm
(under the uniform distribution) will take more than quasipolynomial time to identify a parity
function which is weakly correlated with the target function.

A.2 MOD, of AC for p > 2

For z € {0,1}" the function M OD(z) outputs 1 if and only if z; + ...+ z, is an integer multiple
of p. It has been shown by Zhang [30] that for any fixed prime p > 2 the function MOD,(z) has

|J\70\DZ,(S)| = 1/2°U™) for all S # @. This observation taken by itself leaves open the possibility
that boosting and Fourier methods could be combined to learn this class as follows: choose the
constant function —yg as the first weak hypothesis. Then apply boosting to shift the distribution.
Perhaps some other parity function will now be a weak approximator with respect to this new
distribution and can be found reasonably efficiently. If so, then potentially a strong hypothesis can
be produced by continuing this boosting process.

However, we argue that this approach cannot succeed given current boosting algorithms. Every
known boosting algorithm that is given a constant function as the first weak hypothesis will form
the distribution for the next boosting round in a very simple way: it gives more weight to all
positive examples and less weight to all negative examples, or vice versa. More precisely, it will
change the weight on all positive examples by the same additive or multiplicative factor, and it
will similarly change the weight on all negative examples by using a single factor. If the initial
distribution has at most two distinct weights, one shared by all positive examples and the other
shared by all negative examples, then the new distribution will have the same form—all positives
share a single weight, all negatives a different weight—but will have weights that differ from the
first distribution.

Also, while the specific weight changes may vary with the boosting algorithm, in no case will
the change be greater than is required to balance the weight on the positive and negative examples.
Specifically, in the case of learning M OD,, with respect to the uniform distribution, the most weight
put on examples in the second boosting distribution D; will be (p/2)/2".

We will show that after any such change to the distribution it will still be the case that only
the constant parity function has more than inverse exponential correlation with the target MOD,
function with respect to the uniform distribution.

So consider the correlation of any parity function xp, B # &, with the target M OD, function
f with respect to D;. Let w_1/2" be the weight placed on each negative example by D; and w; /2"

13

be the weight on each positive example. Then

w-— w
Eplfxpl= 5 Y. —xp@ -+ Y xsle).
z.f(z)=— z.f(z)

Now let f'(z) = (f(z) +1)/2 (f' is the 0/1-valued function that is 1 if and only if f is 1). Then
for all A # &, F(A) = f(A)/2. Similarly, for f"(z) = (1 — f(x))/2 (1 if and only if f is —1),
F7(A) = —f(A)/2 for all A # @. So

Ep,[fx5] = wn Bl @)es (&) ~ w1 Bl (@)xn@)] = P f(B).

Since the w’s are at most linear in p, and since f (B) is exponentially small, we have that every
parity function (except possibly the constant) is very weakly correlated with f with respect to
D;. This implies that at the next boosting step, any known Fourier-based learning strategy can
do no better than choosing the constant as the weak hypothesis. But this will simply lead to a
distribution Dy of the same form as D; and with the same constraints on the weights.

B Learning Threshold of AC’

A threshold function ¢ : {—1,1}" — {—1,1} is defined by real numbers wy, ..., wy,,0; the value of
t(z) is 1 if and only if w1+ - -+w,z, > 6. We do not know whether every threshold of AC° function
must have some Fourier coefficient of inverse quasipolynomial size. Thus it is conceivable that our
algorithm in Section 3 may be able to learn any threshold of AC® function in quasipolynomial time.
However, we can show that our analysis given in Section 3.1 breaks down for threshold of AC®. More
specifically we construct a threshold of AC® function such that even under the uniform distribution
on {—1,1}" no input to the threshold gate is nonnegligibly correlated with its output. We use the
following lemma (whose proof is omitted from this extended abstract):

Lemma 20 Let n > 1 be odd and let t : {—1,1}" — {—1,1} be the threshold function defined by
t(z) def (=1)U*D) where 1 < j < n is the smallest index such that z; = 1 (if z; = —1 for all j then
t(r)=—1). For1<i<n+1and1<j<nletz’€{0,1}" be defined as follows:
. -1 ifi>]
y=¢1 ifi=j
(1)t ifi < .

Let Fy denote the £-th Fibonacci number (so Fy = F, =1, F3 = 2, etc.) and let Gy def Fpo+Fy 1—-1.
Let D be the following distribution over {—1,1}" :

F;, /G, if t =z for some 1 <i<n
D(z)={ F,-1/G, ifz=2z""!
0 otherwise.

Then for each i = 1,...,n we have |Ep[z;it(z)]] = 1/Gn = 1/2%M™ and moreover Ep[t(z)] =
1/Gp = 1/28Um).

As the first step of the analysis in Section 3.1, we observed that for any distribution D and
any MAC? circuit f = MAJ(Cy,...,C;) there is some AC? circuit C; which is an input to the
top-level majority gate such that |[Ep[C;f]| > 1/t. We now show that this property does not hold
for threshold of AC? even if the distribution is uniform. More precisely, we have

14

Lemma 21 There is a threshold of AC® function g : {—1,1}" — {—=1,1}, defined by g(z) =
t(Ci,...,C,) where each C; is a polynomial-size depth-2 circuit, such that for 1 < i < n we have
|E[Cig]| = O(1/G,,) and moreover E[g] = O(1/Gy).

Proof: We exhibit constant-depth circuits C1,...,C, with the following property: given a uni-
formly distributed input z € {—1,1}", the distribution of the n-bit string C1(z)Ca(z)...Cy(x)
which is input to ¢ is exponentially close to the distribution D described in Lemma 20. This is done
as follows: let [0,a1],[a1 +1,a2],...,[an—1+1, a4, [a, +1,2" — 1] be a partition of {0,1,...,2" —1}
into n + 1 disjoint intervals where the i-th interval [a;_1 + 1, a;] is of length approximately 2"D(z?).
On input z € {—1,1}" the j-th circuit C; outputs 1 if and only if the number in {0,1,...,2" — 1}
corresponding to z lies in an interval [aj_1 + 1, ay] such that the i-th bit of z* is 1.

It is easily verified that the above choice of a1, . . . , a,, causes the distribution of Cy (z)Cs(x) ... Cp(x)
to be exponentially close to D. Each circuit C; as described above must output 1 if and only if its
input, viewed as an integer, lies in a union of at most n intervals in {0,1,...,2" —1}. Such circuits
can be constructed in polynomial size and depth 2. |

We conclude by observing that known polynomial-time algorithms for learning a single threshold
gate make essential use of geometric techniques (e.g. the linear programming algorithms used by
Blumer et al. [7] and the “outlier removal lemma” of Blum et al. [6]). These techniques have a very
different feel from the Fourier methods which have proved useful for uniform distribution learning.
It would be interesting to have a learning algorithm which combines these two approaches.

15

