
More Efficient PAC-learning of DNF with Membership Queries

Under the Uniform Distribution

Nader H. Bshouty

Technion

Jeffrey C. Jackson∗

Duquesne University

Christino Tamon

Clarkson University

Corresponding Author:

Jeffrey C. Jackson
Mathematics and Computer Science Department
Duquesne University
600 Forbes Avenue
Pittsburgh, PA 15282-1754
U.S.A.
Email: jackson@mathcs.duq.edu
Tel: 412-396-6466
Fax: 412-396-5197

∗This material is based upon work supported by the National Science Foundation under Grants No. CCR-9800029

and CCR-9877079.

Abstract

An efficient algorithm exists for learning disjunctive normal form (DNF) expressions in the

uniform-distribution PAC learning model with membership queries [15], but in practice the algo-

rithm can only be applied to small problems. We present several modifications to the algorithm

that substantially improve its asymptotic efficiency. First, we show how to significantly improve

the time and sample complexity of a key subprogram, resulting in similar improvements in the

bounds on the overall DNF algorithm. We also apply known methods to convert the resulting

algorithm to an attribute efficient algorithm. Furthermore, we develop techniques for lower

bounding the sample size required for PAC learning with membership queries under a fixed dis-

tribution and apply this technique to the uniform-distribution DNF learning problem. Finally,

we present a learning algorithm for DNF that is attribute efficient in its use of random bits.

Keywords: Probably Approximately Learning; Membership Queries; Disjunctive Normal

Form; Uniform Distribution; Fourier Transform.

2

1 Introduction

Jackson [15] gave the first polynomial-time PAC learning algorithm for DNF with membership

queries under the uniform distribution. However, the algorithm’s time and sample complexity

make it impractical for all but relatively small problems. The algorithm is also not particularly

efficient in its use of random bits.

In this paper we significantly improve the time, sample, and random bit complexity of Jackson’s

Harmonic Sieve. Furthermore, by applying existing techniques, we show that the algorithm can be

made attribute efficient. Attribute efficient learning algorithms are standard PAC algorithms with

the additional constraint that the sample complexity of the algorithm must be polynomial in log n

(where n represents the total number of attributes) and in all other standard PAC parameters,

including the number of attributes that are relevant to the target, which we will denote by r.

Specifically, with s representing the size of the DNF expression to be learned and 1−ε the desired

accuracy of the learned hypothesis, we show that the sample complexity can be reduced from the

Õ(ns4/ε8) implicit in Jackson’s Harmonic Sieve algorithm to Õ(rs2/ε4). Similarly, the time bound

can be reduced from Õ(ns8/ε12) to Õ(rs4/ε4). Other aspects of the algorithm, such as the form

and size of the hypothesis produced, are not adversely affected by these changes. Furthermore,

at the expense of producing a more complex hypothesis, the time and sample complexity can be

reduced to Õ(rs2/ε2) and Õ(rs4/ε2), respectively, by employing a recent observation of Klivans

and Servedio [16].

We obtain our main results by improving on a key Fourier-based subprogram of the Harmonic

Sieve. Specifically, the Sieve relies on an algorithm developed by Goldreich and Levin [12] that,

given the ability to query a Boolean function f over n Boolean inputs at a polynomial number

of points, finds the parity functions (over subsets of the inputs) that are best correlated with f

3

with respect to the uniform distribution. (The Goldreich-Levin algorithm is often referred to in the

learning-theoretic literature as the Kushilevitz-Mansour algorithm, as the latter authors were the

first to apply it to larger learning theory questions [17].) As applied in the Sieve, the Goldreich-

Levin algorithm runs in time Õ(ns6) and sample complexity Õ(ns4). The Harmonic Sieve actually

needs a slightly modified version of this algorithm and performs additional processing, further

increasing the overall bounds on DNF learning.

Levin subsequently developed an alternative algorithm for the parity-learning problem that

offers some potential computational benefits [19]. However, a straightforward implementation of

the algorithm within the Harmonic Sieve gives a time bound of Õ(n2s2 + ns4) and sample bound

of Õ(n2s2), which while better than Goldreich-Levin in terms of s are worse in terms of n.

We build on Levin’s work, developing an algorithm that, when used as a subprogram of the

Harmonic Sieve, has time bound and sample complexity Õ(ns2) (or Õ(rs2) if a relevant attribute

detection scheme is applied), improving on both Goldreich-Levin and Levin. This improved algo-

rithm for locating well-correlated parity functions may be of interest beyond our application of it

to DNF learning.

We also develop a new technique for finding a lower bound on the sample size needed to learn

classes in the PAC-learning model with membership queries. We apply this technique to find

a lower bound of roughly Ω(s log r) for PAC-learning DNF with membership queries under the

uniform distribution. There is thus some gap between this and our upper bound.

Finally, we develop some general derandomization techniques and apply them to obtain a learn-

ing algorithm for DNF that is attribute efficient in its use of random bits.

The remainder of the paper is organized as follows. We first give necessary definitions and

some background theorems. The key problem analyzed in this paper, which we call the weak

parity problem, is then defined, and Levin’s original algorithm for solving this problem is presented

4

in detail. We next develop two improvements on Levin’s algorithm. The performance of the

final improved Levin algorithm when it operates as a subprogram of the Harmonic Sieve is then

analyzed. Next, we present our lower bound argument and approach to improving randomness

efficiency. Finally, suggestions for further work close the paper.

2 Definitions and Notation

Let n be some positive integer and let [n] = {1, 2, . . . , n}. We consider Boolean functions of the

form f : {0, 1}n → {−1, +1}, the class Cn of such functions, and the countable union of such classes

C =
⋃

n≥0 Cn. In this paper we will focus on the class of DNF expressions. A DNF formula is a

disjunction of terms, where each term is a conjunction of literals. A literal is either a variable or

its negation. The size of a DNF f is the number of terms of f . The class of DNF formulas on n

variables consists of Boolean functions on n inputs that can be written as a DNF formulas of size

polynomial in n.

For a ∈ {0, 1}n, denote the i-th bit of a by ai. The Hamming weight of a, i.e., the number

of ones in a, is denoted wt(a). For i ∈ [n], the unit vector ei is the vector of all zeros except for

the i-th bit which is one. For I ⊆ [n], the vector eI denotes the vector of all zeros except at bit

positions indexed by I where they are ones. We denote the bitwise exclusive-or between two vectors

a, b ∈ {0, 1}n by a ⊕ b. The dot product a · b is defined as
∑n

i=1 aibi. When dealing with subsets,

we identify them with their characteristic vectors, i.e., subsets of [n] with vectors of {0, 1}n. So for

two subsets A, B, the symmetric difference of A and B is denoted by A ⊕ B.

If f(n) = O(g(n)) and g′(n) is g(n) with all logarithmic factors removed, then we write f(n) =

Õ(g′(n)). This extends to k-ary functions for k > 1 in the obvious way. The function sign(x)

returns +1 if x is positive and −1 is x is negative.

5

Let f, h be Boolean functions. We say that h is an ε-approximator for f under distribution D if

PrD[f 6= h] < ε. We also use the notation f4h to denote the symmetric difference between f and

h, i.e., {x : f(x) 6= h(x)}. The example oracle for f with respect to D is denoted by EX(f, D).

This oracle returns the pair (x, f(x)) where x is drawn from {0, 1}n according to distribution D.

The membership oracle for f is denoted by MEM(f). On input x ∈ {0, 1}n, this membership

oracle returns f(x). The Probably Approximately Correct (PAC) learning model [23] is defined as

follows. A class C of Boolean functions is called PAC-learnable if there is an algorithm A such

that for any positive ε (accuracy) and δ (confidence), for any f ∈ C, and for any distribution D,

with probability at least 1 − δ, the algorithm A(EX(f, D), ε, δ) produces an ε-approximator for f

with respect to D in time polynomial in the size s of f , n, 1/ε and 1/δ. We call a concept class

weakly PAC-learnable if it is PAC-learnable with ε = 1/2− 1/poly(n, s). The ε-approximator for f

in this case is called a weak hypothesis for f . If C is PAC-learnable by an algorithm A that uses

the membership oracle then C is said to be PAC-learnable with membership queries.

A variable or input xi to a function f is relevant if f(a) 6= f(a⊕ei), for some a ∈ {0, 1}n. If there

exists a function ι(n) = o(n) so that C is PAC-learnable by an algorithm A that asks poly(r, s)ι(n)

examples and queries, where r is the number of relevant variables of the target function f ∈ C,

then C is said to be ι(n)-attribute efficient PAC-learnable with membership queries. A class is

attribute-efficient PAC-learnable if it is log n-attribute efficient PAC-learnable. If the algorithm A

outputs an ε-approximator h of size poly(r, s)ι(n), then C is said to be PAC-learnable attribute

efficiently with small hypothesis.

The Fourier transform of a Boolean function f is defined as follows. Let f̂(a) = Ex[f(x)χa(x)]

be the Fourier coefficient of f at a ∈ {0, 1}n, where χa(x) = (−1)a·x and the expectation is taken

with respect to the uniform distribution over {0, 1}n. It is a well-known fact that any Boolean

function f can be represented as f(x) =
∑

a f̂(a)χa(x), since the functions χa, a ∈ {0, 1}n, form an

6

orthonormal basis of real-valued functions over {0, 1}n. When dealing with a real-valued function

g : {0, 1}n → R, the notation |g| denotes max{|g(x)| : x ∈ {0, 1}n}.

Next we define some notation from coding theory [24]. Let Σ be a finite alphabet of size m. A

code C of word length n is a subset of Σn. The distance between two codewords x, y ∈ L is defined

as d(x, y) = |{i ∈ [n] : xi 6= yi}| and the minimum distance of C is defined as

d(L) = min{d(x, y)|x, y ∈ C, x 6= y}.

An q-ary [n, d]-code is a code over an alphabet of size q of word length n and minimum distance

d. In most cases, the alphabet Σ is a finite field Fq of size q and the code C is a linear subspace

of Fn
q ; in this case, C is called a q-ary linear [n, k, d]-code, if C has dimension k as a subspace. The

generator matrix G of a q-ary linear [n, k, d]-code C is a n × k matrix over Fq whose columns are

the basis of C; each codeword in C is of the form G · x, for some x ∈ Fk
q . Finally, a code C is called

asymptotically good if, as n → ∞, both the rate k/n and d/n are bounded away from zero.

3 Sample Size Theorems

We make frequent use of the following two theorems to derive sample sizes sufficient to estimate

the mean of a random variable to a specified accuracy with a given confidence level.

Lemma 1 (Hoeffding) Let X1, X2, . . . , Xm be independent random variables all with mean µ such

that for all i, a ≤ Xi ≤ b. Then for any λ > 0,

Pr

[∣∣∣∣∣
1

m

m∑

i=1

Xi − µ

∣∣∣∣∣ ≥ λ

]
≤ 2e−2λ2m/(b−a)2 .

7

It follows that the sample mean of m = (b − a)2 ln(2/δ)/(2λ2) independent random variables

having common mean µ will, with probability at least 1− δ, be within an additive factor of λ of µ.

Lemma 2 (Bienaymé-Chebyschev) Let X1, X2, . . . , Xm be pairwise independent random vari-

ables all with mean µ and variance σ2. Then for any λ > 0,

Pr

[∣∣∣∣∣
1

m

m∑

i=1

Xi − µ

∣∣∣∣∣ ≥ λ

]
≤ σ2

mλ2
.

It follows that the sample mean of m = σ2/(δλ2) random variables as described in the lemma

will, with probability at least 1 − δ, be within an additive factor of λ of µ.

4 Weak Parity Learning

While our ultimate goal is to show how to improve the running time and randomization aspects

of the Harmonic Sieve algorithm for learning DNF expressions, the core of our speed-up result

lies in improving a key procedure of the Sieve. This procedure is used to weakly learn a function

f : {0, 1}n → {−1, +1} using a hypothesis drawn from the class of parity functions P = {χa,−χa |

a ∈ {0, 1}n}. We will refer to this as the problem of weak parity learning; it is defined formally

below.

In this section we will study the weak parity learning problem and present an algorithm that

noticeably improves on the previous best asymptotic time bounds of other algorithms for solving this

problem. Specifically, letting s represent the smallest number of terms in any DNF representation

of the target f , the time bounds for previous algorithms were Õ(ns6) [12] and Õ(n2s2 + ns4) [19].

The time bound for our new algorithm is Õ(ns2).

Further below, we will begin our development of a more efficient weak parity algorithm by

reviewing Levin’s algorithm [19] for this problem. Levin’s algorithm has sample and time complexity

8

bounds dependent on n2 as well as other factors. After describing Levin’s algorithm, we will show

how to modify it to reduce the bounds to a linear dependence on n. Finally, we give a further

modification that improves the time bound’s dependence on the DNF-size s of the target function.

Before developing these algorithms, we give a formal definition of the problem to be solved and

show how it is related to PAC learning, providing a rationale for our name for this problem.

4.1 The Weak Parity Problem

Definition 1 (θ-Heavy Fourier Coefficient) A Fourier coefficient f̂(a) of a function f : {0, 1}n →

{−1, +1} is said to be θ-heavy if |f̂(a)| ≥ θ/c for some fixed constant c ≥ 1 (c will be clear from

context when its value is important).

Definition 2 (Weak Parity Learning) Given a positive real value θ and a membership oracle

MEM(f) for an unknown target function f : {0, 1}n → {−1, +1}, the weak parity learning problem

consists of determining whether or not f has a a θ-heavy Fourier coefficient, and if so, finding the

index (frequency) of one such coefficient.

Definition 3 (Weak Parity Algorithm) A weak parity algorithm is an algorithm that, given

MEM(f) and θ as above along with a postive real value δ, succeeds with probability at least 1 − δ

at solving the weak parity learning problem within a specified run time bound that can depend

polynomially on n, θ−1, and log δ−1.

Lemma 3 If A(MEM(f), θ, δ) is a weak parity algorithm then there is an algorithm A′(MEM(f), δ)

that learns an Ω(1/s)-approximator to f with respect to the uniform distribution, where s is the least

number of terms in any DNF representation of the target function f (the DNF-size of f). Further-

more, A′ runs in time bounded by O(log2 s) times the running time of A(MEM(f), 1/(2s + 1), δ).

The hypothesis produced by A′ will come from P.

9

In short, given a weak parity algorithm as defined above, we can construct an algorithm

that weakly learns using P as the hypothesis class and that has the same run time bound as

A(MEM(f), 1/(2s + 1), δ) to within logarithmic factors. Therefore, every weak parity algorithm

as defined above is the essence of an algorithm that weakly learns in the standard PAC sense and

that outputs a parity function as its hypothesis. Thus, while we develop weak parity algorithms

below that accept an arbitrary threshold value θ as a parameter, our run time bounds for the

algorithms will be stated in terms of s by applying the substitution θ = 1/O(s) and including the

O(log2 s) factor inherent in our construction of A′.

Proof of Lemma 3: First note that every DNF function f has a Fourier coefficient of

magnitude at least 1/(2s + 1) [15]. We will use this fact to show that any weak parity algorithm

A(MEM(f), θ, δ) can be converted to an algorithm A′(MEM(f), δ) that with probability at least

1− δ runs within the stated time bound and produces the index a of a Fourier coefficient such that

|f̂(a)| = Ω(1/s). We will then observe that the (1/s)-heavy Fourier cofficient produced by A′ cor-

responds to a parity function that weakly approximates f with respect to the uniform distribution.

We construct A′ from A as follows. Algorithm A′ consists of running A repeatedly with different

arguments each time, the ith time with arguments A(MEM(f), 21−i, δ/2i). That is, A′ implements

a “guess-and-double” strategy. The algorithm continues to run instances of A until one of these runs

returns a heavy Fourier coefficient. Notice that on run number dlog(2s + 1)e + 1 (if the algorithm

calls A this many times), A will be called with its θ parameter assigned a value at most 1/(2s + 1)

and its δ parameter assigned a value at most δ/2(2s + 1). Therefore, this run will with probability

at least 1 − δ/2(2s + 1) successfully return a (1/(2s + 1))-heavy Fourier coefficient and run within

time O(log s) times the time bound on A(MEM(f), 1/(2s+1), δ), since A by definition has a time

bound logarithmic in log δ−1.

Furthermore, since the preceding O(log s) runs of A use larger parameter values, they will with

10

high probability successfully complete and run within the same time bound as this final run. In

fact, our choice of values for the δ parameters in each run guarantees that all of the runs of A,

including this final run, will successfully complete within the time bound with probability at least

1− δ. Therefore, if one of these earlier runs was to return an index that presumably corresponded

to a (1/(2s+1))-heavy Fourier coefficient, with probability at least 1− δ this returned index would

in fact correspond to a heavy coefficient. Summarizing, this algorithm A′ performs as was claimed

above.

To see that a (1/s)-heavy Fourier coefficient corresponds to a weakly approximating parity

function, we consider the defintion of Fourier coefficients. That is, if a is an index such that

|f̂(a)| ≥ 1/s, then by definition we have that |Ex∼Un [f(x)χa(x)]| ≥ 1/s. Note that, since f and χa

are both functions mapping to {−1, +1}, f(x)χa(x) = 1 if and only if f(x) = χa(x). Therefore,

Ex∼Un [f(x)χa(x)] = 2Prx∼Un [f(x) = χa(x)]− 1. So if |Ex∼Un [f(x)χa(x)]| ≥ 1/s then we will have

Prx∼Un [f(x) = h(x)] ≥ 1/2 + 1/(2s) for either h(x) = χa(x) or h(x) = −χa(x).

4.2 Weak Parity Learning using Levin’s Algorithm

In this section we describe Levin’s algorithm [19] for solving a problem closely related to the weak

parity learning problem. We then show a straightforward way of converting Levin’s algorithm to

one that explicitly solves the weak parity learning problem as we have defined it.

Levin’s algorithm differs from weak parity algorithms as described above in that it returns a

short list of Fourier coefficients that with high probability contains a heavy coefficient. To convert

this to a weak parity algorithm we must extract a single heavy coefficient from the list. The

straightforward method of extracting this coefficient presented in this section is actually somewhat

computationally expensive. Some of our later speed-up will come from taking a more sophisticated

approach to this part of the problem.

11

4.2.1 Levin’s Algorithm

The specific problem solved by Levin’s algorithm is the following: given a membership oracle

MEM(f) for some function f and given a positive threshold θ such that there is at least one

θ-heavy coefficient, with probability at least 1
2 return a list of O(n/θ2) Fourier indices that contains

at least one θ-heavy coefficient. The constant c appearing in the definition of θ-heavy is here taken

to be 1.

We begin our development of Levin’s algorithm by assuming for the moment that we have

guessed that f̂(a) is a heavy coefficient and that we want to verify our guess. Typically, we might

perform this verification by drawing a sample X of x ∈ {0, 1}n uniformly at random and computing

∑
x∈X f(x)χa(x)/|X|. Applying the Hoeffding bound (Lemma 1), it follows that |X| on the order of

f̂−2(a) will give a good estimate of f̂(a) with high probability. However, notice that we do not need

a completely uniform distribution to produce a coarse estimate with reasonably high probability.

In particular, if we draw the examples X from any pairwise independent distribution, then we can

apply Chebyshev bounds (Lemma 2) and get that for |X| ≥ 2n/f̂2(a), with probability at least

1 − 1/2n, sign(
∑

x∈X f(x)χa(x)) = sign(f̂(a)). Thus a polynomial-size sample suffices to find the

sign of the coefficient with reasonably high probability, even using a distribution which is only

pairwise rather than mutually independent.

One way to generate a pairwise independent distribution is by choosing, for fixed k > 1, a

random n-by-k 0-1 matrix R and forming the set Y = {R · p | p ∈ {0, 1}k − {0k}} (the arithmetic

in the matrix multiplication is performed modulo 2). This set Y is pairwise independent because

each n-bit vector in Y is a linear combination of random vectors, so knowing any one vector Rp

gives no information about what any of the remaining vectors might be, even if p is known. Thus

if we take k = dlog2(1 + (2n/f̂2(a)))e and form the set Y as above then with probability at least

12

1 − 1/2n over the random draw of R, sign(
∑

x∈Y f(x)χa(x)) = sign(f̂(a)).

We will actually be interested in functions that vary slightly from f . Specifically, for 1 ≤ i ≤ n,

define fi(x) ≡ f(x ⊕ ei) and note that

f̂i(a) = Ex[fi(x)χa(x)]

= Ex[f(x ⊕ ei)χa(x)]

= Ex[f(x)χa(x ⊕ ei)]

= Ex[f(x)χa(x)χa(ei)]

= (−1)aiEx[f(x)χa(x)]

= (−1)ai f̂(a).

(The third equality follows by a change of variables.) Since each of the f̂i(a) coefficients has the

same magnitude as f̂(a), it follows that for any fixed i and for Y and k as above,

sign

(∑

x∈Y

f(x ⊕ ei)χa(x)

)
= (−1)aisign

(
f̂(a)

)
(1)

with probability over the uniform random choice of R of at least 1− 1/2n. Therefore, with proba-

bility at least 1/2, (1) holds simultaneously for all i.

Note that instead of summing over x above, we could rewrite this as a sum over p ∈ P , where

P = {0, 1}k − {0k}. Define fR,i(p) ≡ f((Rp) ⊕ ei). Then with probability at least 1/2 over the

13

choice of R, for all i we have

(−1)aisign
(
f̂(a)

)
= sign


∑

p∈P

f((Rp) ⊕ ei)χa(Rp)




= sign


∑

p∈P

fR,i(p)(−1)aT ·R·p




= sign


∑

p∈P

fR,i(p)χaT R(p)


 . (2)

Now fix z ∈ {0, 1}k and notice that by the definition of the Fourier transform,

f̂R,i(z) = 2−k
∑

p∈{0,1}k

fR,i(p)χz(p). (3)

If z = aT R then the sum on the right-hand side of (3) is almost identical to the sum in (2). The

only difference is that the 0k vector has been included in (3).

To handle this off-by-one problem, we make k larger than needed for purposes of applying the

Chebyshev bound. Specifically, let k = dlog2(1 + (2n/f̂2(a)))e + 1, so |Y | = 2k − 1 > 4n/f̂2(a).

This Y is sufficiently large so that it is still the case that with probability at least 1/2, for all i,

(−1)aisign
(
f̂(a)

)
= sign


 ∑

p∈{0,1}k

fR,i(p)χaT R(p)


 .

To see this, note that our sample size |Y | is now twice that required by the Chebyshev lemma.

Now if the sample is twice as large as required to obtain the correct sign (i.e., twice as large as is

required to be within |f̂(a)| of the true mean value), this means that, for fixed i, with probability

at least 1 − 1/2n
∣∣∣∣
∑

p∈P fR,i(p)χaT R(p)

|Y | − f̂i(a)

∣∣∣∣ ≤
|f̂i(a)|√

2
. (4)

14

Also, based on the bound on |Y | given above, for all n > 0 and any fixed i we have 1/|Y | < |f̂i(a)|/4.

It follows that with probability at least 1− 1/2n the sign of the sum in (4) will agree with the sign

of f̂i(a) even if an additional term with incorrect sign is added to the sum. Therefore, for z = aT R,

with probability at least 1/2 over the choice of R, (−1)aisign(f̂(a)) = sign(f̂R,i(z)) holds for all i.

Up until now we have been assuming that the index a of a heavy Fourier coefficient of f is

known. We’re now ready to show how to use the observations above to, with probability at least

1/2, find a list of coefficients containing such an a.

First, notice that each of the n functions fR,i is a function on k bits, so the entire truth table for

each of these functions is of size 2k ≤ 4 + (8n/f̂2(a)). This is polynomial in f̂−1(a), where f̂(a) is

of magnitude at least θ, since f̂(a) is assumed to be a θ-heavy Fourier coefficient. Therefore, with

constant probability we can efficiently produce a list of length 2k containing the index of a heavy

Fourier coefficient as follows. First, select R at random and compute exactly the complete Fourier

transforms of each of the n functions fR,i. If the Fast Fourier Transform algorithm is used (see, e.g.,

[1]) then each of these transforms can be computed in time k2k. Next, we turn this collection of n

Fourier transforms on k-bit functions into a two dimensional 2k-by-n table, each column consisting

of one of the Fourier transforms. Each row of this table is then converted to an n-bit Fourier index

by mapping each value in a row to 0 if the value is positive and 1 otherwise. Then, based on our

earlier analysis, with probability at least 1/2 the row corresponding to aT R contains the index a if

f̂(a) > 0 and the ones complement of a otherwise.

Figure 1 shows Levin’s algorithm for finding a set containing a θ-heavy Fourier coefficient

with probability at least 1/2. One minor concern addressed in the given implementation of the

algorithm is the time required to flip an input bit, i.e., the time required for the operation x⊕ei. For

consistency with our subsequent algorithms, we assume in our presentation of Levin’s algorithm

that this operation will be performed as part of each membership query, and therefore assume

15

Input: Membership oracle MEM(f)(x, i) that given x and i returns f(x⊕ei); number of input bits
n; threshold 0 < θ < 1 such that there is at least one Fourier coefficient f̂(a) such that |f̂(a)| ≥ θ
Output: With probability at least 1/2 return set containing n-vector a such that |f̂(a)| ≥ θ

1. Define k ≡ dlog2(1 + (2n/θ2))e + 1
2. Choose n by k matrix R by uniformly choosing from {0, 1} for each entry of R
3. Generate the set Y of n-vectors {R · p | p ∈ {0, 1}k}
4. for each i ∈ [n] do
5. for each R · p ∈ Y do
6. Call MEM(f)(R · p, i) to compute f((R · p) ⊕ ei) (call this fR,i(p))
7. end do
8. Compute (using FFT) f̂R,i

9. for each z ∈ {0, 1}k

10. Compute az,i = sign
(
f̂R,i(z)

)

11. end do
12. end do
13. For z ∈ {0, 1}k define az ≡ (

az,1+1
2 ,

az,2+1
2 , . . . ,

az,n+1
2)

14. return {az, az | z ∈ {0, 1}k}

Figure 1: Levin’s algorithm.

unit time for this operation. This seems a reasonable assumption, as a simple modification to the

membership oracle can accomodate this bit-flipping operation with a constant additional time cost

per each access to an input bit.

Specifically, the new membership oracle can be thought of as adding an interrupt handler to the

original membership oracle. Each time the original oracle requests the value of an input bit, say

bit j, the interrupt handler fires. If the second (bit number) argument to the new oracle is equal

to j, then the handler returns to the original oracle the complemented value of bit j. Otherwise, it

returns unchanged the value of bit j.

In summary, Levin’s algorithm produces a list of 2k+1 = O(n/θ2) vectors in time Õ(n2/θ2),

and with probability at least 1/2 one of these vectors is the index of a θ-heavy Fourier coefficient

if such a coefficient exists. We next turn to converting this algorithm to a weak parity algorithm.

16

Input: Number of input bits n; set S containing n-bit vectors; membership oracle MEM(f);
threshold 0 < θ < 1; confidence 0 < δ < 1
Output: Depends on whether or not S contains an element a such that |f̂(a)| ≥ θ/3:

• If not, with probability at least 1 − δ returns empty set

• If so, with probability at least 1 − δ returns set containing a single such a.

1. Choose set T of 18 ln(16n/(δθ2))/θ2 n-bit vectors uniformly at random
2. for each a ∈ S do
3. Compute f̃(a) = 1

|T |

∑
x∈T f(x)χa(x)

4. if |f̃(a)| ≥ 2θ/3 then
5. return {a}
6. end if
7. end do
8. return ∅

Figure 2: Simple testing phase algorithm.

4.2.2 Producing a Weak Parity Algorithm from Levin’s Algorithm

If Levin’s algorithm is run log2(2/δ) times then with probability at least 1 − δ/2 the union of the

sets of vectors returned by the runs contains the index of a θ-heavy coefficient, if the target function

has such a coefficient. However, a weak parity algorithm as we have defined it must return a single

θ-heavy coefficient. In this section we show how to implement a testing phase that post-processes

the set produced by Levin’s algorithm, producing a single θ-heavy coefficient with high probability

if one exists.

The simple testing strategy applied in this section is illustrated in Figure 2. The primary input

to the algorithm is a set S representing the union of the sets produced by log 2/δ independent

runs of Levin’s algorithm. The testing algorithm first draws uniformly at random a single set T

of vectors to be used as input to the target function. Next, it calculates the sample mean of the

function fχa for each index a in S. The size of T is chosen (by application of the Hoeffding bound)

such that with probability at least 1− δ all of these estimates will be within θ/3 of their true mean

values. Therefore, if there is at least one index in S representing a θ-heavy coefficient then with

17

probability at least 1 − δ some such index will pass the test at line 4. Similarly, with the same

probability all indices representing Fourier coefficients b such that |f̂(b)| < θ/3 will fail the test.

Therefore, the algorithm performs as claimed in the figure. Note, however, that the coefficient

returned is only guaranteed to be θ-heavy in the c = 3 sense of the definition of θ-heavy, not in the

c = 1 sense that Levin’s algorithm guarantees.

Overall, then, by following multiple calls to Levin’s algorithm with this testing step (using δ/2

as the confidence parameter), we have a weak parity algorithm. Because the size of the set S

that is input to the testing algorithm will be of size Õ(n/θ2), the overall algorithm runs in time

Õ(n2/θ2 + n/θ4). It can also be verified that the sample complexity is Õ(n2/θ2).

In the next subsection we improve on this algorithm, essentially reducing the n2 terms to linear

factors of n.

4.3 Improving on Levin’s Algorithm

The observation that f̂i(a) = (−1)ai f̂(a) was crucial to the success of Levin’s algorithm. Our basic

approach to improving on Levin’s algorithm is to extend this observation from the case of a single

input bit being flipped to multiple bit flips and to use an algorithm based on multiple bit flips to

infer the results we would get from the individual bit flips used in Levin’s algorithm. By performing

this process multiple times, we can employ a voting strategy that reduces the run time dependence

on n in the new algorithm.

As an example of the multiple bit flipping strategy, let a be the index of a heavy Fourier

coefficient. For any distinct fixed i, j ∈ [n], the earlier analysis can be extended in a straightforward

18

way to show that

f̂(a) = Ex[f(x ⊕ e{i,j})χa(x ⊕ e{i,j})]

= (−1)ai(−1)ajEx[f(x ⊕ e{i,j})χa(x)].

(More generally, for any fixed I ⊆ [n], f̂(a) = Ex[f(x ⊕ eI)χa(x)]
∏

i∈I(−1)ai .) Therefore, for

pairwise independent Y as before we have that for a given i and j,

sign(
∑

x∈Y

f(x ⊕ e{i,j})χa(x)) = (−1)ai(−1)aj sign(f̂(a))

with probability at least 1 − 1/2n. We also have that

sign(
∑

x∈Y

f(x ⊕ ej)χa(x)) = (−1)aj sign(f̂(a))

with the same probability. Thus with probability 1− 1/n both of these sums have the correct sign

and can be used to solve for the value of ai (the sign of the product of the two sums gives (−1)ai).

This gives a way to determine the value of ai that is distinct from Levin’s original method. We can

do something similar using ak rather than aj for some k 6= j, giving us yet another way to compute

ai’s value.

If there was sufficient independence between these different ways of arriving at values of ai,

then we could use many such calculations and take their majority vote to arrive at a good estimate

of the value of ai. The Hoeffding bound would then show that we could tolerate a much smaller

probability of success for each of the individual estimates of mean values, specifically constant

probability of success rather than 1 − 1/2n. Furthermore, if this probability was not dependent

on n, then working back through the earlier analysis we see that the variable k used in Levin’s

19

Input: Membership oracle MEM(f)(x, I) that given x and I returns f(x ⊕ eI); number of input
bits n; threshold 0 < θ < 1 such that there is at least one Fourier coefficient f̂(a) such that
|f̂(a)| ≥ θ
Output: With probability at least 1/4 return set containing n-vector az such that |f̂(az)| ≥ θ

1. Choose constant 0 < c < 1/8 (different choices will give different performance for different
problems)

2. Define t ≡ d2 ln(4n)/(1 − 8c)2e
3. Choose set T consisting of t uniform random n-vectors over {0, 1}
4. Define k ≡ dlog2(1 + 1/cθ2)e + 1
5. Choose n by k matrix R by uniformly choosing from {0, 1} for each entry of R
6. Generate the set Y of n-vectors {R · p | p ∈ {0, 1}k}
7. for each I ∈ T do
8. for each R · p ∈ Y do
9. Call MEM(f)(R · p, I) to compute f((R · p) ⊕ eI) (call this fR,I(p))

10. end do
11. Compute (using FFT) f̂R,I

12. for each i ∈ [n] do
13. Compute fR,I⊕{i}(p) as in line 9.

14. Compute (using FFT) ̂fR,I⊕{i}

15. end do
16. end do
17. for each z ∈ {0, 1}k do
18. for each i ∈ [n]

19. Compute az,i = sign
(∑

I∈T sign
(
f̂R,I(z) · ̂fR,I⊕{i}(z)

))

20. end do
21. end do
22. return {az | z ∈ {0, 1}k}

Figure 3: Improved Levin algorithm.

algorithm also would not depend on n. This in turn would result in an overall reduction in the run

time bound’s dependence on n.

These observations form the basis for the algorithm shown in Figure 3. First, notice that for

k = dlog2(1 + 1/cθ2)e we have that, for a such that |f̂(a)| > θ, with probability at least 1 − c over

the choice of R

sign(
∑

x∈Y

f(x)χa(x)) = sign(f̂(a)).

Furthermore, for any fixed I ⊆ [n], we can similarly apply Chebyshev to f(x ⊕ eI) and get that

20

with the same probability 1 − c over uniform random choice of R,

sign

(∑

x∈Y

f(x ⊕ eI)χa(x)

)
= sign

(
f̂(a)

) ∏

j∈I

(−1)aj . (5)

This means that the expected fraction of I’s that fail to satisfy (5) for uniform random choice of R

is at most c. Therefore, by Markov’s inequality, the probability of choosing an R such that a 2c or

greater fraction of the I’s fail to satisfy (5) is at most 1/2. We will call such an R bad for a and all

other R’s good for a. Furthermore, for any fixed i ∈ [n] and for any R that is good for a, at most

a 2c fraction of the I’s fail to satisfy the following equality:

sign

(∑

x∈Y

f(x ⊕ eI ⊕ ei)χa(x)

)
= sign

(
f̂(a)

) ∏

j∈I⊕{i}

(−1)aj . (6)

This follows because for any fixed R there is a one-to-one correspondence between the I’s that fail

to satisfy this equality and those that fail to satisfy (5). Therefore, combining (5) and (6), for fixed

i, the probability over random choice of R is also at most 1/2 that for a greater than 4c fraction of

the I’s, either of the following conditions holds (each condition is a conjunction of two relational

expressions):

sign

(∑

x∈Y

f(x ⊕ eI)χa(x)

)
6= sign

(
f̂(a)

) ∏

j∈I

(−1)aj

and

sign

(∑

x∈Y

f(x ⊕ eI ⊕ ei)χa(x)

)
= sign

(
f̂(a)

) ∏

j∈I⊕{i}

(−1)aj ,

or

sign

(∑

x∈Y

f(x ⊕ eI)χa(x)

)
= sign

(
f̂(a)

) ∏

j∈I

(−1)aj

21

and

sign

(∑

x∈Y

f(x ⊕ eI ⊕ ei)χa(x)

)
6= sign

(
f̂(a)

) ∏

j∈I⊕{i}

(−1)aj .

This in turn implies that for fixed i,

Pr
R

[
Pr
I

[
sign

(∑

x∈Y

f(x ⊕ eI)χa(x) ·
∑

x∈Y

f(x ⊕ eI ⊕ ei)χa(x)

)
6= (−1)ai

]
≥ 4c

]
≤ 1

2
.

So, for fixed i and R’s that are good for a, a random choice of I has probability at least 1 − 4c of

giving the correct sign for ai and therefore probability at most 4c of giving the incorrect sign. If

the correct sign is +1, then for a good R and any fixed i,

EI

[
sign

(∑

x∈Y

f(x ⊕ eI)χa(x) ·
∑

x∈Y

f(x ⊕ eI ⊕ ei)χa(x)

)]
≥ 1 − 8c.

Similarly, a correct sign of −1 gives expected value bounded by −1 + 8c. So by Hoeffding, if we

estimate this expected value by taking a sum over t randomly chosen I’s, for

t ≥ 2 ln 4n

(1 − 8c)2
, (7)

then the sign of the estimate will be (−1)ai with probability at least 1−1/2n. Therefore, for any R

good for a, with probability at least 1/2 the sign estimates of (−1)ai will be correct simultaneously

for all n possible values of i. In this case, we will discover all n bits of the index a of the heavy

Fourier coefficient f̂(a). Since we have probability at least 1/2 of choosing a good R, overall we

succeed at finding a with probability at least 1/4 over the random choice of R and of the t values

of I.

One final detail that must be addressed is that while the above analysis is in terms of sums of

22

the form
∑

x∈Y , the implicit sums computed by the algorithm, using the FFT, effectively include

the bit-vector x = 0n. As with the analysis of Levin’s orginal algorithm, we can overcome this

problem by using a somewhat larger k value than the above analysis would indicate. It is easy to

verify that the k given in Figure 3 is sufficient to overcome this off-by-one problem.

This algorithm has sample and time complexity Õ(n/θ2). However, as before, this algorithm

is not by itself a weak parity algorithm. To find a single Fourier coefficient that is θ-heavy again

requires testing possibly each of the 2k = O(θ−2) coefficients returned by the improved Levin’s

algorithm, and the simple test phase as given in Figure 2 takes time Õ(θ−2) per coefficient. So

the time complexity of the resulting weak parity algorithm is now Õ(n/θ2 + θ−4). While an

improvement over the bound for the previous weak parity algorithm, this is still not as good as the

sample complexity bound, which can be seen to be Õ(n/θ2). It would of course be nice to get a

similar bound on the time complexity, and in fact this is what we do next.

4.4 Improving the Testing Phase

In this section, we will show how to further modify Levin’s algorithm so that it produces a list

containing only θ-heavy coefficients (in the c = 3 sense of θ-heavy), still in time Õ(n/θ2). To

convert this to a weak parity algorithm is then simply a matter of choosing one of the elements

of the list arbitrarily, so the testing phase is no longer needed. Thus the resulting weak parity

algorithm has an overall time bound of Õ(n/θ2).

The basic idea is that we will now “tighten up” our estimates of E[f(x⊕eI)χa(x)] =
∏

j∈I(−1)aj f̂(a).

Earlier, we were only interested in getting the sign of our estimates of this expectation correct.

Now, we will want to obtain estimates of this expectation that are (with high probability) within

θ/3 of the true value. Because for each choice of R, f̂R,I(a
T R) is (approximately) an estimate

of E[f(x ⊕ eI)χa(x)], we can then decide whether or not a given z in the algorithm of Figure 3

23

corresponds to a θ-heavy a: loosely, if |f̂R,I(z)| < 2θ/3 then z does not correspond to a θ-heavy

a, and we will eliminate the corresponding az from the output list of coefficients. Otherwise, the

corresponding az is θ-heavy, and we leave it in the list.

Actually, what we have just outlined will not quite work, because we cannot afford to estimate

the expectation for each value of I to within θ/3 and still reach our desired time bound. Instead,

because we are not really interested in the values of the expectation for individual I’s but are merely

using various I’s to obtain an estimate of the magnitude of f̂(a), we can once again use a voting

scheme. An argument similar to the earlier one will then show that this voting scheme succeeds

within the required time bounds.

Finally, we must also eliminate from the final list of coefficients any “stray” coefficients produced

by “bad” choices of R or of a set of I’s. That is, it is quite possible that particular choices of R

or a set of I’s could result in a non-heavy coefficient appearing to be heavy. However, it is much

less likely that this same non-heavy coefficient will consistently appear to be heavy for a number of

independently chosen R’s and sets of I’s. Therefore, we can once again employ voting to eliminate

these non-heavy coefficients from the final output list.

Formalizing these ideas, we arrive at the algorithm of Figure 4. In what follows we will outline

the correctness of this algorithm. First consider two coefficients a and b where a is fully θ-heavy

(|f̂(a)| ≥ θ) and b is θ-light (|f̂(b)| < θ/3). Choose k = dlog2(1+1/(cθ2))e for some constant c, let R

be a uniform random n by k matrix as before, and also as before take Y = {R·p | p ∈ {0, 1}k−{0k}}.

Then define

∆R,I,d ≡
∣∣∣∣∣

1

2k − 1

∑

x∈Y

f(x ⊕ eI)χd(x) − f̂(d)χd(eI)

∣∣∣∣∣

24

Input: Membership oracle MEM(f)(x, I) that given x and I returns f(x ⊕ eI); number of input
bits n; threshold 0 < θ < 1 such that there is at least one Fourier coefficient f̂(a) such that
|f̂(a)| ≥ θ; confidence parameter 0 < δ < 1.
Output: With probability at least 1 − δ return set containing all of the n-vectors a such that
|f̂(a)| ≥ θ and no n-vectors b such that |f̂(b)| < θ/3

1. Choose positive real constants c1, c2, δ1, δ2 such that Γ ≡ 1 + (δ1 + δ2)(1/c1 + 1/c2)− 2(δ1 +
1/c1) − (δ2 + 1/c2) is positive, 1/c1 + 1/c2 < 1, and δ1 + δ2 < 1

2. Choose constant 0 < c < min(1/18c1, 1/4c2)
3. Define k ≡ dlog2(1 + 1/(cθ2))e + 1
4. Define λ ≡

√
4 + 2Γ − 2

5. Define ` ≡ smallest integer such that ` ≥ ln(6`/cδθ2)/2λ2

6. Define t ≡ d2 ln(2n/δ2)/(1 − 4c2c)
2e

7. Define m ≡ d2 ln(2/δ1)/(1 − 18c1c)
2e

8. L ← empty list
9. repeat ` times

10. Choose n by k matrix R by uniformly choosing from {0, 1} for each entry of R
11. Generate the set Y of n-vectors {R · p | p ∈ {0, 1}k}
12. for each z ∈ {0, 1}k do set V (z) to 0
13. Choose set T consisting of max(m, t) uniform random n-vectors over {0, 1}
14. for each I ∈ T do
15. for each R · p ∈ Y do compute fR,I(p) (using MEM(f))

16. Compute (using FFT) f̂R,I

17. for each z ∈ {0, 1}k do add VI,R(z) to V (z) (see equation (10))
18. for each i ∈ [n] do
19. for each R · p ∈ Y do compute fR,I⊕{i}(p) (using MEM(f))

20. Compute (using FFT) ̂fR,I⊕{i}

21. end do
22. end do
23. for each z ∈ {0, 1}k do
24. if V (z) > 0 then

25. Define each bit i ∈ [n] of az by az,i = sign
(∑

I∈T sign
(
f̂R,I(z) · ̂fR,I⊕{i}(z)

))

26. if aT
z R = z then add az to L

27. end if
28. end do
29. end repeat
30. Define Θ ≡ `((1 − δ1 − δ2)(1 − 1/c1 − 1/c2) − λ)
31. return {a : a appears at least Θ times in L}

Figure 4: An algorithm incorporating the magnitude test.

25

where d is an n-bit vector. Chebyshev’s inequality then gives that for fixed I and any fixed d,

Pr
R

[∆R,I,d ≥ θ/3] ≤ 9c.

By a Markov argument as before, this implies that for fixed d and constant 0 < c1 < 1,

Pr
R

[
Pr
I

[∆R,I,d ≥ θ/3] ≥ 9c1c

]
≤ 1

c1
. (8)

Similarly, for constant 0 < c2 < 1,

Pr
R

[
Pr
I

[∆R,I,d ≥ θ] ≥ c2c

]
≤ 1

c2
. (9)

For fixed d and θ, we call R magnitude good for d if both PrI [∆R,I,d ≥ θ/3] ≤ 9c1c and PrI [∆R,I,d ≥

θ] ≤ c2c. Note that the probability of drawing a magnitude good R for any fixed d is at least

1 − (1/c1 + 1/c2) by inequalities (8) and (9).

Next, we define a voting procedure, which we would like to produce +1 if its k-bit input z

corresponds to a fully heavy coefficient and −1 if z corresponds to a light coefficient. We will see

below that the following procedure frequently (over choices of R and I) performs in just this way:

VR,I(z) =





1 if
∣∣∣f̂R,I(z)

∣∣∣ ≥
2(2k−1)θ

3
+sign(f̂R,I(z))f(eI)

2k

−1 otherwise

(10)

Definition 4 Let R be the multiset of R’s generated on line 10 by a single run of the algorithm.

Let d ∈ {0, 1}n be a fully heavy (resp. light) coefficient, let R ∈ R be magnitude good for d, and let

zd ≡ dT R. Then the pair (zd, R) is called a (d, R)-decisive pair. For a fully heavy (resp. light)

coefficient d, Zd represents the set of all (d, R)-decisive pairs.

26

It is convenient to define a partial function s : {0, 1}n → {−1, +1} that produces +1 if its input

is the index of a fully heavy coefficient, −1 if it’s input corresponds to a light coefficient, and is

otherwise undefined. Then if d represents a fully heavy or light coefficient, we will say that a (d, R)-

decisive pair votes correctly given I if VR,I(zd) = s(d). We will next show that every (d, R)-decisive

pair will with high probability vote correctly given random I.

Lemma 4 If (zd, R) is a (d, R)-decisive pair then s(d)EI [VR,I(zd)] ≥ 1 − 18c1c.

Proof: We prove the lemma for d fully θ-heavy, which we represent by the symbol a. The proof

for θ-light b consists of showing that EI [VR,I(zb)] ≤ −1 + 18c1c, which is very similar and omitted.

Recall that

f̂R,I(z) =
1

2k

∑

p∈{0,1}k

fR,I(p)χz(p).

Also, for any k-bit z, fR,I(0
k)χz(0

k) = f(eI). So

2k
∣∣∣f̂R,I(za)

∣∣∣ − sign
(
f̂R,I(za)

)
f(eI) = sign

(
f̂R,I(za)

) ∑

p∈{0,1}k−{0k}

fR,I(p)χza(p)

= sign
(
f̂R,I(za)

) ∑

x∈Y

f(x ⊕ eI)χa(x).

Therefore, VR,I(za) will be 1 if and only if sign(f̂R,I(za))
∑

x∈Y f(x ⊕ eI)χa(x)/(2k − 1) ≥ 2θ/3.

Furthermore, since 0 < 1/(2k − 1) < 2θ/3 for k and c as defined in Figure 4, and because also

2k|f̂R,I(za)| − sign(f̂R,I(za))f(eI) ≥ −1, it follows that

∣∣∣∣
∑

x∈Y f(x ⊕ eI)χa(x)

2k − 1

∣∣∣∣ ≥
2θ

3
⇒

∣∣∣∣∣
∑

x∈Y

f(x ⊕ eI)χa(x)

∣∣∣∣∣ > 1

⇒ 2k
∣∣∣f̂R,I(za)

∣∣∣ − sign
(
f̂R,I(za)

)
f(eI) > 1 > 0

⇒ sign
(
f̂R,I(za)

)
= sign

(∑

x∈Y

f(x ⊕ eI)χa(x)

)

27

and therefore

∣∣∣∣∣
∑

x∈Y

f(x ⊕ eI)χa(x)/(2k − 1)

∣∣∣∣∣ ≥ 2θ/3 =⇒ sign
(
f̂R,I(za)

) ∑

x∈Y

f(x ⊕ eI)χa(x)/(2k − 1) ≥ 2θ/3.

The converse is also clearly true. Therefore,

VR,I(za) = 1 ⇐⇒
∣∣∣∣∣
∑

x∈Y

f(x ⊕ eI)χa(x)/(2k − 1)

∣∣∣∣∣ ≥ 2θ/3.

Now for fully θ-heavy a and any R and I such that ∆R,I,a < θ/3, it follows that |∑x∈Y f(x ⊕

eI)χa(x)/(2k − 1)| ≥ 2θ/3. Also, by definition, if R is magnitude good for a then PrI [∆R,I,a ≥

θ/3] < 9c1c. Therefore, for a fully θ-heavy and R magnitude good for a, the probability over

random choice of I of a 1 vote is at least 1 − 9c1c and the probability of a −1 vote at most 9c1c,

establishing the claim that for such an a and R, EI [VR,I(za)] ≥ 1 − 18c1c.

Now assume that for fixed R and fixed 0 < θ < 1 and 0 < δ < 1, a multiset M of m ≥

2 ln(2/δ1)/(1 − 18c1c)
2 I’s is drawn uniformly at random. Then by the Hoeffding bound, any

(d, R)-decisive pair will with probability at least 1− δ1 vote correctly given I for a majority of the

I’s in M . We say in this case that the (d, R) pair votes correctly over M . Symbolically, if (zd, R)

is a (d, R)-decisive pair and M is a randomly selected multiset of at least m I’s,

Pr
M

[
sign

[∑

I∈M

VR,I(zd)

]
= s(d)

]
≥ 1 − δ1.

Now note that an R which is “magnitude good” is also “good” in essentially the sense used in

the previous section. That is, for any R that is magnitude good for fully heavy a, with probability

28

at least 1 − 1/c2 over random choice of I,

sign

(∑

x∈Y

f(x ⊕ eI)χa(x)

)
= sign

(
f̂(a)

)
χa(eI).

Thus, applying the analysis of the previous section, it is easily seen that

EI∈T

[
sign

(∑

x∈Y

f(x ⊕ eI)χa(x) ·
∑

x∈Y

f(x ⊕ eI ⊕ ei)χa(x)

)]
≥ 1 − 4c2c.

So by Hoeffding, if T is a randomly chosen set of at least t I’s—for t as shown in Figure 4—and if a

is fully heavy, if the R chosen at line 10 is magnitude good for a, and if (R, a) votes correctly over

T , then with probability at least 1−δ2 over the choice of the set T , a will be added to the candidate

list L of coefficients by an execution of the statements at lines 11 through 28 of the algorithm.

Summarizing, assume that we choose a single set (call it T for consistency with the algorithm

of the previous section) that contains at least max(m, t) randomly chosen I’s. Then a fully heavy

coefficient a will be added to the candidate list L when R is magnitude good for a and both the

V (za) > 0 test at line 24 and the “decoding” of a at line 25 succeed. For T chosen as above and

random R, this occurs with probability at least (1− 1/c1 − 1/c2)(1− δ1 − δ2). On the other hand,

a light coefficient b will be added to L only if R is not magnitude good for b or if it is magnitude

good but the test V (zb) > 0 incorrectly succeeds. In fact, if R is not fully magnitude good but

satisfies only PrI [∆R,I,b ≥ θ/3] < 9c1c (which is true with probability at least 1 − 1/c1 over choice

of R), then b will be added to L with probability at most δ1. Therefore, light b is added to L with

probability at most δ1+1/c1 over the choice of T and R. Note also that the test at line 26 precludes

a light coefficient from being added to the list more than once for a given choice of R and T .

Therefore, in order to detect the presence of light b’s in the candidate list, we will randomly

choose multiple R’s and T ’s, use each pair to add a set of coefficients to L, and then consider the

29

sample frequency of each coefficient d appearing in L. Since R and T are chosen independently

each time, for a given d each pass of the algorithm effectively produces an independent sample of a

random {0, 1}-valued variable having a mean value that is the probability that d is added to L over

random choice of R and T . If c1, c2, δ1, and δ2 are chosen appropriately, there will be a significant

gap between the L-inclusion probability for any fully heavy coefficient a and any light coefficient b.

Thus once again Hoeffding can be used to choose an appropriately large sample of size ` that can

with high probability be used to differentiate between all light coefficients in L and all of the fully

heavy coefficients.

Specifically, the gap Γ between the probability of occurrence of heavy and light coefficients will

be at least 1+(δ1 + δ2)(1/c1 +1/c2)−2(δ1 +1/c1)− (δ2 +1/c2). So we might choose the parameter

λ for the Hoeffding bound to be Γ/2. We would then like to apply the Hoeffding bound to select

a random sample of size ` sufficiently large so with probability at least 1 − δ the probability of

occurrence for all coefficients is estimated to within λ. Since there are at most 3`/cθ2 coefficients

in L, the union bound indicates that an ` of at least ln(6`/cδθ2)/(2λ2) would be sufficient.

However, there is a potential flaw in this approach having to do with the choice of λ. We do

not know a priori which coefficients will appear in L. In particular, we will be estimating the

probability of occurrence for those light coefficients that appear at least once in L, so these light

coefficients will have sample mean at least 1/` even if the true mean is extremely small or even

0. In effect, the sample mean for light coefficients is biased by at most an additive 1/` factor.

Notice also that for ` at least ln(6`/cδθ2)/(2λ2) and given the constraints on c (see lines 1 and 2

of the algorithm), 1/` ≤ λ2/2. Thus if we choose λ such that λ2/2 + 2λ is equal to Γ then, by the

Hoeffding bound, removing all coefficients that occur fewer than `((1−δ1−δ2)(1−1/c1−1/c2)−λ)

times in L removes all of the light coefficients and none of the fully heavy ones, with probabilty at

least 1 − δ.

30

Finally, it can be verified that there are constant values c1, c2, δ1, and δ2 satisfying the given

constraints (line 1. For example, we can choose c1 = 4, c2 = 18, δ1 = 1/61, δ2 = 1/25. With these

constants fixed, Γ = 7/18, and all constraints are satisfied. Ideally, given θ and δ, the constant

values (including c) should be chosen to minimize ` max(m, t)n2kk, which is roughly the number

of operations performed by the innermost loop of the algorithm.

5 Learning DNF

In this section, we will plug the improved weak parity algorithm developed above into a version of

the Harmonic Sieve, an algorithm for learning DNF with respect to the uniform distribution [15].

Before we can do this, we need to generalize the weak parity problem to a non-Boolean setting.

The Sieve can then make use of the resulting generalized weak parity algorithm in order to more

efficiently learn DNF.

5.1 Solving the Non-Boolean Weak Parity Problem

Earlier, we introduced the weak parity learning problem and provided several algorithms for solving

it. Until now, it was assumed that the target function f was Boolean. However, the definitions

of θ-heavy, weak parity learning, and weak parity algorithm immediately generalize to the case in

which the target g is real-valued. We will argue here that the weak parity algorithms developed

in the previous section can also be generalized to solve the weak parity problem for non-Boolean

target g.

Lemma 5 Let g : {0, 1}n → R be any real-valued function such that |g| ≥ 1 and let θ > 0 be any

value such that there is at least one Fourier coefficient ĝ(a) such that |ĝ(a)| ≥ θ.

• If Levin’s algorithm is modified to use a value of k = dlog2(1 + (2n|g|2/θ2))e + 1, it will with

31

probability at least 1/2 return a set containing an n-bit vector a such that |ĝ(a)| ≥ θ.

• If the improved Levin’s algorithm is modified to use a value of k = dlog2(1+(|g|2/cθ2))e+1, it

will with probability at least 1/4 return a set containing an n-bit vector a such that |ĝ(a)| ≥ θ.

• If Levin’s algorithm with magnitude testing is modified to use a value of k = dlog2(1 +

(|g|2/cθ2))e+ 1 then with probability at least 1− δ it returns a set containing all n-bit vectors

a such that |ĝ(a)| ≥ θ and no n-bit vectors b such that |ĝ(b)| < θ/3.

Proof: Notice first that the primary change to the earlier analysis of Levin’s algorithm is that,

while 1 is an upper bound on the variance σ2 for any Boolean-valued function f , this bound does

not hold for arbitrary non-Boolean g. Instead, we can use |g|2 as an upper bound on the variance

of g. Choosing k as given in the statement of the lemma and generalizing the earlier analysis

of Levin’s algorithm in the obvious ways proves first part of the lemma. Specifically, for k =

log2(1+(2n|g|2/θ2))e and Y as defined in Levin’s algorithm, we have that sign(
∑

x∈Y g(x)χa(x)) =

sign(ĝ(a)) with probability at least 1 − 1/2n.

The only other significant change to the analysis involves the off-by-one error introduced by

using Fourier coefficients rather than a sum over Y . In the non-Boolean setting, “extra” term

gR,i(0
k)χaT R(0k) can now have magnitude as large as |g| (its magnitude was 1 for the Boolean

case). However, because of the increase in k relative to the original Levin’s algorithm, it will still

be the case that for k as given in the statement of the lemma |g|/|Y | = |g|/(2k − 1) < |ĝ(a)|/4,

and the remainder of the off-by-one analysis for the Boolean and non-Boolean cases is identical. It

can easily be verified that the off-by-one analysis for the other two algorithms generalizes in a very

similar way.

The proof of Lemma 4 must also be generalized, since for non-Boolean g and any z we have that

2k|ĝR,I(z)| − sign(ĝR,I(z))g(eI) ≥ −|g| (the bound was −1 for Boolean f). But offsetting this we

32

can show that for the k given in the third part of the statement of the lemma, 1/(2k − 1) < 2θ/3|g|

(rather than 2θ/3 for Boolean f). Given these observations, the rest of the proof of Lemma 4 easily

generalizes to non-Boolean g.

5.2 Weak Parity Learning and DNF

The original Harmonic Sieve uses a non-Boolean version of a weak parity algorithm due to Goldreich

and Levin [12] as the basis for a weak parity learning algorithm (using a construction similar to the

one of Lemma 3) in a boosting-based algorithm for learning DNF. The generalized Goldreich-Levin

algorithm runs in time Õ(n|g|6/θ6) [15] vs. Õ(n|g|2/θ2) for the final version of Levin’s algorithm

developed above. In the original Sieve, the weak parity algorithm is called with a membership

oracle for |g| bounded by O(1/ε2+α) for arbitrarily small constant α, and θ = Ω(1/s), where s is

the minimum number of terms in any DNF representation of the target function. Thus in terms

of the PAC parameters ε and s, the weak parity algorithm runs in time roughly Õ(ns2/ε4). Since

the weak parity algorithm dominates the time of the inner loop of the Sieve algorithm, and the

boosting loop is executed Õ(s2) times, replacing the original weak parity algorithm with the new

one reduces the time bound on the Sieve from roughly Õ(ns8/ε12) to Õ(ns4/ε4).

As Klivans and Servedio have pointed out [16], replacing the original Sieve’s boosting algorithm

with an alternative boosting algorithm can produce further improvement. In particular, one of

Freund’s boosting algorithms [11] (called BComb by Klivans and Servedio) will call the weak parity

algorithm with |g| bounded by Õ(1/ε) and θ bounded as above, yet still runs for only Õ(s2) boosting

stages. This brings the time bound for the overall algorithm down to Õ(ns4/ε2), but at the expense

of a somewhat more complex hypothesis than the one produced by the original Sieve. The original

algorithm produces a threshold of parity functions, while the modified algorithm will produce a

threshold of thresholds of parities. In fact, the top-level threshold in the hypothesis produced

33

using BComb may also have random variables as inputs, so this hypothesis is not necessarily even

deterministic.

5.3 Sample Complexity

The final non-Boolean weak parity algorithm has sample complexity Õ(n|g|2/θ2). Note that in

terms of its sampling of the target function g, this algorithm is oblivious in the sense that the

algorithm makes membership queries on MEM(g) without considering the target function itself:

the queries are dictated by the random choices of the matrices R and sets T of n-bit vectors. Fur-

thermore, the Harmonic Sieve simulates the membership oracle for g directly from the membership

oracle for the DNF target f . That is, for any x, the only query to MEM(f) needed to compute

MEM(g)(x) is MEM(f)(x). Also, the boosting algorithm does not require that its kb = Õ(s2)

executions of the weak parity algorithm have independent probabilities of failure. Instead, it is

enough to have each execution fail with probability at most δ/kb, and then the union bound (which

does not require independence) will guarantee an overall probability of success of at least 1 − δ.

So by drawing a single multiset M of R’s and T ’s sufficient to ensure that one execution of

the weak parity algorithm succeeds with probability at least 1 − δ/kb, M plus the single set Q

of membership queries to f dictated by M can be used for all executions of the weak parity

algorithm, and the overall Sieve will still succeed with probability at least 1 − δ. Since the size of

the sample required for a single execution of the weak parity algorithm depends logarithmically on

its δ parameter, the size of Q will still be Õ(n|g|2/θ2). In the context of the Harmonic Sieve using

BComb, this corresponds to a sample size of Õ(ns2/ε2).

34

5.4 Attribute Efficient Learning

As has been noted by others (see [6] and the references therein), the relevant variables of a target

function can, in many learning models, be located relatively easily when a membership oracle is

available. We briefly outline here an argument showing that any algorithm using membership

queries to learn a projection-closed function class (i.e., a class closed under partial assignment)

with respect to the uniform distribution can be made attribute efficient. Our algorithm for finding

relevant variables quickly is based on an idea noted by Angluin, Hellerstein, and Karpinski [3]. The

analysis in this section, when applied to the algorithm given earlier for learning DNF, implies that

the factor of n in the above soft-O bounds can effectively be replaced by a factor of r.

The idea is that we will incrementally build up a set V containing relevant variables. For each

candidate V we will use random sampling to attempt to verify that a projection of the target

function f on V is with high probability very consistent with f over the entire n-dimensional

space. Once we find a V that passes this test, we can run the learning algorithm on a simulated

membership oracle for the projection of f onto V , since this projection will be a DNF expression

of size no more than the size of f . On the other hand, each V that fails the test will allow us to

rapidly find another relevant variable to add to V .

More specifically, to test a particular V we will first uniformly at random choose a bit-vector

x of length |V | and a bit-vector y of length n − |V | and query f on the n-bit vector formed by

assigning x to the variables in V and y to the variables in [n] \ V . Denote the value returned

by the oracle by f(x, y). For each such pair (x, y) we compare f(x, y) with f(x, 0). We repeat

this for ` = (2/ε) ln(2n/δ) random choices of (x, y)’s. If any one of these queries produces a value

f(x, y) 6= f(x, 0) then we have a witness that there is a relevant variable outside of V . We then flip

half of the 1 bits in y, producing y′, and query f on (x, y′). The result will differ from either f(x, 0)

35

or from f(x, y). In either case, we will have two vectors that are half as far apart in Hamming

distance as 0 and y are. Repeating this bit-flipping procedure at most log n times identifies a

relevant variable that is not in V . If all tests result in equality, then with probability at least

1− δ/(2n) we have Prx,y[f(x, y) 6= f(x, 0)] ≤ ε/2. At this point we learn f(x, 0) to within an error

of ε/2 with probability at least 1 − δ/2.

The probability that this learning strategy fails to produce a hypothesis h that is an ε-approximator

to f is at most, using the union bound, δ. Overall, then, this testing phase consists of at most r ≤ n

rounds, with each round adding one relevant variable to V . Each round consists of O((1/ε) log(n/δ))

queries followed by at most log n additional queries. So we can replace n with r in the earlier bounds

at the expense of an additive factor of Õ((r/ε) log2 n)—hiding the logarithmic factors involving 1/δ.

6 Lower Bounds

In this section we give some lower bounds on the sample complexity for learning classes of Boolean

functions under fixed distributions. We prove the following results.

Theorem 6 Let C be a class of Boolean functions and 0 < ε < 1 be fixed. Also, let Cε ⊆ C be such

that for every f1, f2 ∈ Cε we have PrD[f1 6= f2] ≥ 2ε. Any PAC-learning algorithm with membership

queries that learns C under the distribution D with accuracy ε and with confidence 1 − δ uses at

least

l =

⌊
log |Cε| − log

1

1 − δ

⌋
− 1

queries.

Proof: Let Af
r,s be a randomized algorithm that uses a sequence of random bits r, is given a set

s of m1 random examples, and asks m2 membership queries to f , where m1 + m2 < l. Suppose for

36

every f ∈ Cε we have

Pr
s,r

[D(Af
r,s∆f) ≤ ε] ≥ 1 − δ.

This implies that there is a specific sequence r0 of bits and specific set s0 of m1 examples such that

D(Af
r0,s0

∆f) ≤ ε (11)

for at least (1− δ)|Cε| of the functions in Cε. Since Ar0,s0 asks less than l queries, each query gives

a response in {0, 1}, and 2l < (1−δ)|Cε|, there must be two functions f1 and f2 in Cε and satisfying

(11) for which the algorithm outputs the same hypothesis Af1
r0,s0 = Af2

r0,s0 = h. Now

2ε < D(f1∆f2) ≤ D(h∆f1) + D(h∆f2),

and therefore there is an i such that D(h∆fi) > ε. This is a contradiction.

We will need the following lemma from coding theory (based on the Varshamov-Gilbert bound).

Lemma 7 Let Σ be an alphabet with |Σ| = m symbols. For m > 2 there is a code L ⊆ Σn of

minimum distance cn and size |L| ≥ (m1−c/2)n.

Proof: The lemma follows from a simple counting argument. Since each a ∈ Σn has at most

1 + (m − 1)

(
n

1

)
+ (m − 1)2

(
n

2

)
+ · · · + (m − 1)cn

(
n

cn

)

elements in Σn with distance that is less than or equal to cn, there is a code of size

|L| ≥ mn

1 + (m − 1)
(
n
1

)
+ (m − 1)2

(
n
2

)
+ · · · + (m − 1)cn

(
n
cn

)

37

and minimum distance cn.

Now for m = 2 and c < 1/2, by [24] we have

2n

1 +
(
n
1

)
+ · · · +

(
n
cn

) ≥ 2n

2(1−d)n
= 2dn.

For m > 2 we have

mn

1 + (m − 1)
(
n
1

)
+ (m − 1)2

(
n
2

)
+ · · · + (m − 1)cn

(
n
cn

) ≥ mn

mcn2n
≥

(
m1−c

2

)n

.

We now show that to learn a DNF of size s on r relevant variables (and with ε < 1/4) we need

sample size nearly s log r.

Theorem 8 Any learning algorithm for the class of DNF expressions of size s on r relevant vari-

ables with respect to the uniform distribution requires sample size Ω(s log(r − log s)).

Proof: Let u = r− log s and t = log s, and let x1, . . . , xt and y1, . . . , yu be the r variables of the

DNF. For a ∈ {0, 1}t we define xa = xa1
1 · · ·xat

t where xai

i = xi if ai = 1 and xai

i = x̄i if ai = 0.

Let Σ = {0, 1, y1, . . . , yu, ȳ1, . . . , ȳu}. Now define the set of DNF formulas

C ′ =





∨

a∈{0,1}t

xaya

∣∣∣ (ya)a∈{0,1}t ∈ Σ2t



 .

That is, each DNF expression in C ′ has 2t terms, each containing the t x variables plus one symbol

from Σ (either a y variable or a constant). Furthermore, each term in one of these expressions sets

the senses (positive or negated) of the x variables differently, and all possible senses are represented.

Thus the number of terms in each DNF in C ′ is 2t = s. By Lemma 7 there is L ⊂ Σs of minimum

38

distance cs and size

|L| ≥
(

(2u + 2)1−c

2

)s

.

Fix such an L and define a new set C that is a subset of C ′:

C =





∨

a∈{0,1}t

xaya

∣∣(ya)a∈{0,1}t ∈ L



 .

For y ∈ L we write fy =
∨

a∈{0,1}t xaya. That is, fy represents the DNF expression in which the

ith symbol in the string y is the value of the ya variable in the ith term of the DNF.

Now notice that for every y(1) and y(2) in L we have fy(1) ⊕ fy(2) = fy(1)⊕y(2) . This follows from

the fact that fy can be also written as ⊕a∈{0,1}txaya. Now

Pr[fy(1) 6= fy(2)] = Pr[fy(1) ⊕ fy(1) = 1]

= Pr[fy(1)⊕y(2) = 1]

= E[fy(1)⊕y(2)]

=
1

s

∑

a∈{0,1}t

E[y(1)
a ⊕ y(2)

a]

≥ c

2
.

The latter is because y
(1)
a and y

(2)
a are different in at least cs entries and each y

(1)
a ⊕ y

(2)
a that is not

zero has expectation at least 1/2.

By Theorem 6, any PAC learning algorithm using membership queries with ε = c/4 for this

class needs at least

log

(
(2u + 2)1−c

2

)s

queries for any constant c < 1. This gives a sample complexity of Ω(s log(r − log s)).

39

7 Randomness-efficient Levin Algorithm

In [17] Kushilevitz and Mansour showed how to derandomize another algorithm for solving the same

parity-finding problem solved by Levin, but they assumed that a quantity called the L1-norm of the

target function is polynomially bounded and is known. However, the L1 norm is not polynomially

bounded for the class of polynomial-size DNF expressions [20]. In this section we describe an

algorithm for learning DNF with respect to uniform that is (attribute) efficient in terms of its use

of random bits (its randomness complexity) as well as its sample complexity.

Randomization is used several times in the improved Levin’s algorithm (given in Figure 3).

First, the method uses the random Boolean matrix R ∈ {0, 1}n×k to create the pairwise independent

sample. Second, it requires the set I of t = O(ln n) random vectors used for majority voting. Third,

it uses randomness for Hoeffding sampling to verify that a candidate vector is θ-heavy. For the

first case, which is the main focus of this section, we show that the use of small bias probability

distributions [21] can reduce the number of row bits used by R from nk bits to essentially k log n

bits. For the second case, Goldreich [13] has a method based on error-correcting codes which

can decrease the column bits of R (which directly impacts the sample size used) from O(n/θ2) to

O(1/θ2). We begin by describing the technique to reduce the row size of the random matrix R used

in the basic algorithm (given in Figure 1) and then show how this applies to DNF learning.

We utilize the so-called biased distributions introduced by Naor and Naor [21]. A probability

distribution D : {0, 1}n → [0, 1] is called λ-bias if for all a ∈ {0, 1}n \ {0n} we have |D̂(a)| ≤

λ2−n. Naor and Naor [21] gave an explicit construction of a λ-bias probability distribution of

size O((n/λ)2); so O(log(n/λ)) random bits suffice for sampling from this distribution. Recall that

Levin’s algorithm creates the n×k random Boolean matrix R by selecting each entry randomly and

independently; hence it needs kn random bits. We modify this algorithm by choosing k independent

40

columns of R according to a biased distribution D over {0, 1}n. In this way, the number of random

bits required is O(k log(n/λ)), if a λ-bias D is used.

We formalize the ideas sketched above. A sequence of random variables X1, . . . , Xm is called

pairwise δ-dependent if for every 1 ≤ i 6= j ≤ m and for every a, b, we have |Pr[Xi = a, Xj =

b] − Pr[Xi = a] Pr[Xj = b]| ≤ δ. Next we state an observation on pairwise dependent random

variables and extend Chebyshev’s inequality for these types of random variables.

Claim 9 Let X1, . . . , Xm ∈ {−1, +1} be pairwise δ-dependent random variables. Then |E[XiXj]−

E[Xi]E[Xj]| ≤ 4δ.

Lemma 10 Let X1, . . . , Xm ∈ {−1, +1} be pairwise δ-dependent random variables. Suppose that

for each i ∈ [m], E[Xi] = µ and Var[Xi] = σ2. Then

Pr[sign(
1

m

m∑

i=1

Xi) 6= sign(µ)] ≤ σ2 + 4mδ

mµ2
. (12)

Proof We start with an upper bound for the left-hand side of (12)

Pr[| 1

m

m∑

i=1

Xi − µ| ≥ |µ|] ≤ 1

µ2
E[(

1

m

m∑

i=1

Xi − µ)2] ≤ 1

m2µ2
E[(

∑

i

(Xi − µ))2].

Then using straightforward algebra, we get

1

m2µ2
[
∑

i

E[(Xi − µ)2] +
∑

i6=j

E[(Xi − µ)(Xj − µ)]] =
1

m2µ2
[
∑

i

Var[Xi] +
∑

i6=j

(E[XiXj] − µ2)]

which is bounded from above by (σ2 + 4mδ)/(mµ2).

Notice that by setting δ = 1/(4m) and using the fact that σ2 = 1 − µ2 ≤ 1, we obtain an upper

41

bound of 2/(mµ2) in the lefthand side of the Chebyshev bound stated above. This is only larger

by a multiplicative factor of 2 than the bound obtained from Levin’s original analysis.

We will show that by choosing k independent column vectors from {0, 1}n according to an λ-bias

distribution D the sequence of random variables Xi = Rpi, where pi ∈ {0, 1}k \ {0k}, is pairwise

(4λ/2n)-dependent. So, as long as 4λ/2n ≤ 1/(2m), the analysis in Subsection 4.2 still holds. In

our case, choosing λ to be a fixed small constant will suffice.

Claim 11 Let R be a n-by-k matrix with {0, 1}-entries constructed by selecting k random column

vectors from {0, 1}n according to a λ-bias distribution D over {0, 1}n. Let Xi = Rp(i), for p(i) ∈

{0, 1}k \ {0k}. Then X1, . . . , X2k−1 are pairwise (4λ/2n)-dependent random variables.

Proof We observe first that if D is an λ-bias distribution over {0, 1}n then |D(x) − 2−n| ≤ λ.

Recall that since for all a 6= 0n |D̂(a)| ≤ λ
2n and D̂(0n) = 2−n,

|D(x) − 2−n| = |
∑

a6=0n

D̂(a)χa(x)| ≤
∑

a6=0n

|D̂(a)| ≤ λ.

Let p and q be any elements of {0, 1}k \ {0k}. We need to prove that for any p 6= q and any

a, b ∈ {0, 1}n

|Pr[Rp = a, Rq = b] − Pr[Rp = a] Pr[Rq = b]| ≤ 4λ/2n

Consider first Pr[Rp = a]. Assume without loss of generality that pk 6= 0. Then after choosing the

first k−1 columns of R, the value of the last column is uniquely determine for the equation Rp = a

to hold, say the last column must equal to α ∈ {0, 1}n. Hence Pr[Rp = a] = D(α).

Now consider Pr[Rp = a, Rq = b], with p 6= q ∈ {0, 1}k and a, b ∈ {0, 1}n. We assume without

42

loss of generality that the determinant of the matrix




pk−1 qk−1

pk qk




is nonzero, where arithmetic is over F2. After choosing the first k − 2 columns, there is a unique

solution for the (k − 1)th and kth columns, say α and β. Then Pr[Rp = a, Rq = b] = D(α)D(β),

since we draw independent columns. The difference between two quantities of the form D(α)D(β)

is at most the difference between (2−n−λ)2 and (2−n +λ)2 which is at most 4λ/2n. This completes

the proof.

Levin’s algorithm consumes nk random bits (to choose the matrix R). For learning DNF,

this costs Õ(n log s) random bits per boosting rounds and, with Õ(s2) rounds, the total number

of random bits used by Harmonic Sieve is Õ(ns2). Using biased distributions to generate R, we

replace the factor n by log n. Furthermore, we can apply the argument sketched in Section 5.4 to

replace n with r (the number of relevant variables).

Here we mention Goldreich’s [13] idea of using error correcting codes for improving the modified

Levin algorithm (given in Figure 3). His technique can eliminate the additional random bits required

in our version in Subsection 4.3 and will achieve the same reduction in sample space (from O(n/θ2)

to O(1/θ2)).

In Goldreich’s scheme, we take an asymptotically good binary linear (t, n, d)-code C, i.e., t = O(n)

(constant rate) and d/n = Ω(1) (can tolerate a constant fraction of errors). Since C is a binary

linear code, it has a generator matrix G ∈ {0, 1}t×n; the encoding of a string x ∈ {0, 1}n is G · x.

So the k-th bit of G · x is simply χIk
(x) where Ik is the subset specified by the k-th row of G. The

fact that C can tolerate a constant fraction of errors imply that we can replace the 1/(2n) upper

43

Input: Membership oracle MEM(f)(x, I) that given x and I returns f(x ⊕ eI); number of input
bits n; threshold 0 < θ < 1 such that there is at least one Fourier coefficient f̂(a) such that
|f̂(a)| ≥ θ
Output: With probability at least 1/2 return set containing n-vector a such that |f̂(a)| ≥ θ

1. Define k
·
= dlog2(1/c1θ

2)e + 1, for some constant c1

2. Let D be a λ-bias distribution over {0, 1}n, where λ
·
= 1/2k+2

3. Generate k independent random vectors {C1, . . . , Ck} from D

4. Define matrix R
·
= [C1, . . . , Ck] ∈ {0, 1}n×k

5. Generate the set Y of n-vectors {R · p | p ∈ {0, 1}k}
6. Let t

·
= c2n, for some constant c2

7. Let C = J(t, n, d) be a asymptotically good binary linear code tolerating an error rate of c1.
Let G ∈ {0, 1}t×n be the generator matrix of C and let Decode be its decoding algorithm

8. for each row I ∈ {0, 1}n of G do
9. for each R · p ∈ Y do

10. Compute fR,I(p)
·
= f(R · p ⊕ eI) (by calling MEM(f)(R · p, I))

11. end do
12. Compute (using FFT) f̂R,I

13. for each z ∈ {0, 1}k

14. Compute az,I = sign
(
f̂R,I(z)

)

15. end do
16. end do
17. For z ∈ {0, 1}k define az

·
= Decode(

az,I1
+1

2 ,
az,2+1

2 , . . . ,
az,It

+1

2)
18. return {az, az | z ∈ {0, 1}k}

Figure 5: Derandomized Levin’s algorithm.

bound on the failure probability of approximating each bit of the heavy coefficient with

Pr[sign(
∑

y∈Y

f(y ⊕ eIk
)χa(y)) 6= χIk

(a)sign(f̂(a))] ≤ 1

c
,

for some constant c > 0 and for each row Ik of G. Thus the sample size is |Y | ≥ c/θ2. One can view

this improvement also as a reduction in the column size of the matrix R used in Levin’s algorithm,

since now we can choose R of size O(log(n/λ) × log(1/θ2)). This coding scheme is explicit and

efficient since the class of Justesen codes provide such a family of asymptotically good binary linear

code with an efficient decoding algorithm. We summarize the overall derandomized algorithm in

Figure 5; this algorithm can also be adapted so that it is attribute efficient.

44

8 Future Work

While we have made progress in improving the efficiency of DNF learning, we have focused specifi-

cally on improving the subprogram for finding heavy Fourier coefficients. As noted already, Klivans

and Servedio [16] have had some success at improving the efficiency of the original Harmonic Sieve

algorithm for DNF learning by using a different boosting technique than the one used originally in

the Sieve. However, the hypothesis produced is more complex than the one produced by the Sieve,

and is not guaranteed to be deterministic. Is there a boosting algorithm that can be used to achieve

the best time and sample complexity bounds given in this paper while producing hypotheses in the

same function class as the original Sieve?

One goal in this research is to develop a practical DNF learning algorithm for large problems.

Although the final algorithm we present is reasonably efficient asymptotically, the combination of

non-trivial log factors and somewhat large constants hidden by the asymptotic analysis call into

question the algorithm’s practical usefulness. This raises at least two questions: can the current

algorithm be tuned to perform well on large empirical problems, and if not, how can the run time

for DNF learning be improved?

Another area for future study is closing the significant gap between our lower and upper bounds

for the sample complexity of learning DNF.

Acknowledgments

The authors are grateful to the anonymous referee of the conference version of this paper who,

among other things, reminded them that attribute efficiency is easy to achieve in the learning

model studied in this paper.

45

References

[1] Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[2] Dana Angluin. Queries and Concept Learning. Machine Learning, 2(4):319-342, 1988.

[3] Dana Angluin, Lisa Hellerstein and Marek Karpinski. Learning Read-Once Formulas with
Queries. Journal of the ACM, 40(1):185-210, 1993.

[4] Avrim Blum. Learning Boolean Functions in an Infinite Attribute Space, Machine Learning,
9(4):373-386, 1992.

[5] Avrim Blum, Lisa Hellerstein and Nick Littlestone. Learning in the Presence of Finitely and
Infinitely Many Irrelevant Attributes. Journal of Computer and System Sciences, 50(1):32-40,
1995.

[6] Nader H. Bshouty and Lisa Hellerstein. Attribute-efficient Learning in Query and Mistake-
bound Models. Journal of Computer and System Sciences, 56(3):310-319, 1998.

[7] Ran Canetti, Guy Even and Oded Goldreich. Lower Bounds for Sampling Algorithms Esti-
mating the Average. In Information Processing Letters, 53(1):17-25, 1995.

[8] Aditi Dhagat and Lisa Hellerstein. PAC Learning with Irrelevant Attributes. In Proceedings
of the 35th Annual IEEE Symposium on Foundations of Computer Science, 64-74, 1994.

[9] Petr Damaschke. Adaptive versus Nonadaptive Attribute-efficient Learning. In Proceedings of
the 30th Annual ACM Symposium on Theory of Computing, 590-596, 1998.

[10] Yoav Freund. Boosting a Weak Learning Algorithm by Majority. In Proceedings of 3nd Annual
Workshop on Computational Learning Theory, 202-216, 1990.

[11] Yoav Freund. An Improved Boosting Algorithm and Its Implications on Learning Complexity.
In Proceedings of the 5th Ann. Workshop on Computational Learning Theory, 391-398, 1992.

[12] Oded Goldreich and Leonid Levin. A Hardcore Predicate for all One-Way Functions. In Pro-
ceedings of the 21st Annual ACM Symposium on the Theory of Computing, pages 25-32, 1989.

[13] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algo-
rithms and Combinatorics, Volume 17, Springer-Verlag, 1999.

[14] David Haussler. Quantifying Inductive Bias: AI Learning Algorithms and Valiant’s Learning
Framework. Artificial Intelligence, 36(2), 177-222, 1988.

[15] Jeffrey C. Jackson. An Efficient Membership-Query Algorithm for Learning DNF with Respect
to the Uniform Distribution. Journal of Computer and System Sciences, 55(3):414-440, 1997.

[16] Adam Klivans and Rocco Servedio. Boosting and Hardcore Sets. In Proceedings of the 40th
Ann. Symposium on Foundations of Computer Science, 1999.

[17] Eyal Kushilevitz and Yishay Mansour. Learning Decision Trees using the Fourier Spectrum.
SIAM Journal on Computing, 22(6): 1331-1348, 1993.

46

[18] Nick Littlestone. Learning when Irrelevant Attributes Abound: A New Linear-threshold Algo-
rithm. Machine Learning, 2(4):285-318, 1988.

[19] Leonid Levin. Randomness and Non-determinism. Journal of Symbolic Logic, 58(3):1102-1103,
1993.

[20] Yishay Mansour. An O(nlog log n) Learning Algorithm for DNF under the Uniform Distribution.
In Proceedings of Fifth Annual Conference on Computational Learning Theory, pages 53–61,
1992.

[21] Joseph Naor and Moni Naor. Small-Bias Probability Spaces: Efficient Constructions and Ap-
plications. SIAM Journal on Computing, 22(4):838-856, 1993.

[22] R. Uehara, K. Tsuchida and I. Wegener. Optimal Attribute-efficient Learning of Disjunction,
Parity, and Threshold Functions. In EuroCOLT’ 97, LNAI 1208 Springer, 171-184, 1997.

[23] Leslie Valiant. A Theory of the Learnable. Communications of the ACM, 27(11):1134-1142,
1984.

[24] J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1982.

47

