Weakly Learning DNF and Characterizing Statistical Query
Learning Using Fourier Analysis

(DRAFT — PLEASE DO NOT DISTRIBUTE)

Avrim Blum Merrick Furst Jeffrey Jackson
Carnegie Mellon U. Carnegie Mellon U. Carnegie Mellon U.

Michael Kearns Yishay Mansour Steven Rudich
AT&T Bell Laboratories Tel-Aviv U. Carnegie Mellon U.

November 1993

Abstract

We present new results on the well-studied problem of learning DNF expressions. We prove
that an algorithm due to Kushilevitz and Mansour [13] can be used to weakly learn DNF
formulas with membership queries with respect to the uniform distribution. This is the first
positive result known for learning general DNF in polynomial time in a nontrivial model. Our
results should be contrasted with those of Kharitonov [12], who proved that AC? is not efficiently
learnable in this model based on cryptographic assumptions. We also present efficient learning
algorithms in various models for the read-k and SAT-k subclasses of DNF.

We then turn our attention to the recently introduced statistical query model of learning [9].
This model is a restricted version of the popular Probably Approximately Correct (PAC) model,
and practically every PAC learning algorithm falls into the statistical query model [9]. We prove
that DNF and decision trees are not even weakly learnable in polynomial time in this model.
This result is information-theoretic and therefore does not rely on any unproven assumptions,
and demonstrates that no straightforward modification of the existing algorithms for learning
various restricted forms of DNF and decision trees will solve the general problem. These lower
bounds are a corollary of a more general characterization of the complexity of statistical query
learning in terms of the number of uncorrelated functions in the concept class.

The underlying tool for all of our results is the Fourier analysis of the concept class to be
learned.

1 Introduction

We present new results on the well-studied problem of learning DNF expressions. The problem of
efficiently learning DNF formulas in any nontrivial model of learning has been of central interest
in computational learning theory since the seminal paper of Valiant [18] introducing the popular
Probably Approximately Correct (PAC) learning model. Despite the importance of this problem,
to date no polynomial time algorithm for learning unrestricted DNF has been discovered.

In this paper we prove that an algorithm due to Kushilevitz and Mansour [13] can be used
to weakly learn DNF with respect to the uniform distribution using membership queries. This is
the first positive result for learning general DNF in a nontrivial model of learning. In particu-
lar, this result provides a contrast between DNF formulas and more general AC? circuits, which
Kharitonov [12] proved were not learnable in this model based on cryptographic assumptions. (In
fact, at the time of Kharitonov’s result, it appeared possible that his results would soon be extended
to DNF; our result shows otherwise.)

Due to the lack of positive results for unrestricted DNF, various restricted DNF classes have
attracted considerable attention [4, 2, 8, 3, 1, 5, 14, 6]. We extend these results. In particular, it
is known that the class of read-k DNF (DNF in which every variable appears at most k times) is
learnable in polynomial time using membership queries for £ < 2 [2, 8] but is as hard to learn in
the distribution-free PAC model as unrestricted DNF for k£ > 3 [8]. Also, Aizenstein and Pitt [3]
have shown that read-k SAT-¢ DNF (DNF which are both read-k and such that at most ¢ terms are
satisfied by any input) can be learned in the distribution-free PAC model with membership queries.
We show that, with respect to the uniform distribution and using membership queries, read-k DNF
is polynomial-time learnable with an accuracy that is a constant depending on k. We also prove
that SAT-k DNF is strongly learnable in time exponential in k& (but otherwise polynomial), and
that SAT-k log(n)-DNF is learnable exactly with queries in the same time bound.

We then turn our attention to the recently introduced statistical query model of learning [9].
This is a restricted version of the PAC model in which the learning algorithm does not actually
receive labeled examples of the unknown target function drawn with respect to a distribution.
Instead, in this model the learner may specify any property of labeled examples, and obtain accurate
estimates of the probability that a random example will possess the property. An important feature
of this model is that any class efficiently learnable from statistical queries is efficiently learnable in
the PAC model with an arbitrarily high rate of classification noise [9]. Furthermore, it has been
demonstrated [9] that practically every class known to be efficiently learnable in the PAC model
(either in the distribution-free sense, or with respect to special distributions) is also learnable in
the more restricted statistical query model. In other words, PAC algorithms almost always learn
by estimating probabilities. A notable exception to this is the class of parity functions, which is
known to be efficiently learnable in the PAC model but is not efficiently learnable in the statistical
query model [9].

We provide a general characterization of the number of statistical queries required for learning
that is applicable to any concept class with respect to any distribution. This characterization proves
that if a class contains a superpolynomial number of nearly uncorrelated functions with respect to
a distribution, then a superpolynomial number of statistical queries are required for learning. An
immediate application of this result is that DNF and decision trees are not even weakly learnable
in polynomial time in this model. This result does not rely on any unproven assumptions, and
demonstrates that no straightforward modification of the existing algorithms for learning various
restricted forms of DNF and decision trees will solve the general problem.

All of our results rely heavily on the Fourier representation of functions [15, 13, 17], demon-
strating once again the utility of these tools in computational learning theory.

Actually,
they show
exact with
mem-+-eq
query
learning.

2 Definitions and Notation

2.1 Learning Models

A concept is a boolean function on an instance space X, and for convenience we define boolean
functions to have outputs in {4+1,—1}. A concept class F is a set of concepts. An instance ¥ is an
element of the instance space (here {0,1}"), and we use z; to denote the ith bit of Z. We generally
use f to denote the target concept.

We say that a (possibly randomized) function g is an e-approximator of f if Prjg = f] > 1 —,
where the probability is taken over the uniform distribution on the instance space and over the
random choices of g.

A membership query is a query to an oracle for f for the value of f on a desired instance. If
there is an algorithm A using membership queries such that for any positive € and § and any target
f € F, with probability at least 1 — § algorithm A produces an e-approximation for f in time
polynomial in n, the size s of f, 1/e, and 1/0, then F is (strongly) learnable using queries with
respect to the uniform distribution. The size of a concept f is a measure of the number of bits
in the smallest representation of f; throughout this paper we will use the number of terms in the
smallest DNF representation of f as the size s of f. The parameters € and ¢ above are called the
accuracy and confidence of the approximation, respectively.

If there is a polynomial p(n,s) and an algorithm A4 using membership queries such that for
any positive § and any target f € F, with probability at least 1 — § algorithm A produces a
1/2—1/p(n, s)-approximation for f in time polynomial in n, s, and 1/§, then F is weakly learnable
using queries with respect to the uniform distribution.

Unlike the models of learning we have defined so far, in the statistical query learning model [9]
the learner is not allowed to explicitly see labeled examples (Z, f(Z)) of the target function, but
instead may only estimate probabilities involving labeled examples. We formalize this as follows:
the learning algorithm is given access to a statistics oracle. A query to this oracle is an arbitrary
function ¢ : {0,1}" x {+1,—-1} — {41, —1} along with a tolerance 7. The oracle may respond
with any value 7 satisfying E[g(Z, f(Z))] — 7 < 7 < E[g(&, f(Z))] + 7. In general, we will examine
statistical query learnability not just with respect to the uniform distribution but with respect to
any distribution, in which case it is understood that the expectations above are taken with respect
to the distribution in question, as is the quality of an approximator.

We say that the concept class F is learnable from statistical queries if there is a learning
algorithm A such that for any positive € and any target f € F, algorithm A produces an e-
approximation for f in time polynomial in n, the size of f, and 1/e, and algorithm A only makes
queries (g,7) in which g can be evaluated in time polynomial in these same parameters and 7
is inverse polynomial in these same parameters. The motivation for this notion of efficiency and
for the statistical query model in general can be found in the paper of Kearns [9]; here it suffices
to reiterate that almost every learning algorithm in the PAC model is already a statistical query
algorithm, and that learnability in the statistical query model implies PAC learning with noise.

2.2 DNF Expressions

A DNF formula is a disjunction of terms, where each term is a conjunction of literals and a literal
is either a variable or its negation. For a given DNF formula f we use s to denote the number of
terms in f, T; to represent the ith term in f (the ordering is arbitrary), and V; to denote the set
of variables in T;. A DNF formula f is k-DNF if it has at most k literals in each term, is read-k
if each variable appears at most k times, and is SAT-k if no instance satisfies more than k terms
of f. We assume for convenience that the true output value of a DNF f is represented by +1 and
the false value by —1.

2.3 The Fourier Transform

For each bit vector Z € {0,1}" we define the function xz : {0,1}" — {+1,—1} as xz(Z) = 1 —
2 (3" zix; mod 2). That is, xz(¥) represents the parity of the set of bits in Z selected by 2, with a

parity of 0 represented by +1 and a parity of 1 represented by —1. Defined this way, the 2" parity
functions yz have a number of useful properties which we will exploit repeatedly.

First, with inner product defined by! (f,g) = E[fg] and norm by | f|| = VE[f?], {xs} is an
orthonormal basis for the vector space of real-valued functions on the Boolean cube Z%. That is,
every function f : {0,1}" — R can be uniquely expressed as a linear combination of the parity

functions: .
f= > flaxa

ae{0,1}»

We call the vector of coefficients f the Fourier transform of f. Because of the orthonormality of
the parity functions, f (@) = E[fxz|. Thus for boolean f, f (@) represents the correlation of f and
Xz Also note that f(ﬁ) = E[fxg] = E[f]. We call f((_f) the constant Fourier coefficient since xj is
the constant function +1. Finally, the Fourier transform is a linear operator. That is, if h = cf + g
for functions f, g and scalar ¢, then h = ¢f + §.

Parseval’s identity states that for every function f, E[f?] = 3 f2 (d@). For boolean f it follows
that > fQ(c_z’) =1, a fact we use frequently.

We at times use a subset A of the n variables of a function as the index of a parity or Fourier
coefficient, with the following meaning: x4 denotes the function yz where d is the characteristic
vector corresponding to A, and f(A) has a similar interpretation.

A t-sparse function is a function that has at most ¢ non-zero Fourier coefficients. The support
of a function f is the set {A | f(A) # 0}.

3 Preliminaries

Our positive learnability results rely heavily on an algorithm of Kushilevitz and Mansour [13] (the
KM algorithm) which finds, with high probability, close approximations to all of the large Fourier
coefficients of a function f. The KM algorithm is allowed to make membership queries for f, but
f is treated as a black box. Kushilevitz and Mansour have shown that given such approximate
coefficients one can learn some important concept classes such as decision trees [13].

The main approach of our positive results is to show that DNF formulas have sufficiently large
Fourier coefficients so that the KM algorithm can be usefully applied. We then use a general trans-
formation given below that shows how to take a deterministic approximator g which is noticeably
(that is, inverse polynomially) closer to f than the origin (regarding the functions as vectors), and
produce a randomized approximator h such that Pr[f # h] is similarly better than 1/2.

We begin by stating as a lemma the known results about the KM algorithm which we will need.
These and the other results of this section hold for any class of boolean functions, not just DNF.

Lemma 1 (Kushilevitz & Mansour) For any boolean target function f, threshold 0, and €,6 >
0, the KM algorithm, with probability at least 1 — §, returns the nonzero Fourier coefficients of a
function g with support set S with the following properties:

1. S contains every A such that |f(A)| > 6.

2 Y (f(A) —§(A) <e

AeS
3. |S| is polynomial in 1/6.

The algorithm uses membership queries, and runs in time polynomial inn, 1/6, 1/¢, and log(1/9).

!Expectations here and elsewhere are with respect to the uniform distribution over the instance space unless
otherwise noted.

We use KM (6,¢€,0) to represent an execution of the KM algorithm with the respective threshold,
accuracy, and confidence parameters. The fact that it is possible for the algorithm to return only
a number of coefficients polynomial in 1/6 follows from the fact that Y 4 f2 (A) =1, so there are
at most 1/6? coefficients with magnitude at least 6.

We now turn to bounding the difference between the target f and the function g returned by
the KM algorithm. The following lemma, whose proof is straightforward and omitted, gives us a
bound on E[(f — g)?] in terms of a lower bound on 3" 4.4 F2(A).

Lemma 2 Given a {+1, —1}-valued function f, let S be a set such that Y 4cg fQ(A) > «, and let g
be the output of KM (\/a/(4]S]),/4,5). Then with probability at least 1 -4, B[(f—g)%] < 1—a/2.

Now we are ready to link the squared error measure above with the notion of e-approximation.

Lemma 3 Given a {+1,—1}-valued function f and a deterministic approximator g, define the
randomized function h as follows: let h(¥) = —1 with probability p = (1 — g(£))%/2(1 + ¢*(¥)) and
h(Z) = 1 with probability 1 — p. Then Pr[f # h] < %E[(f —9)?. So, if E[(f —9)?] <1—« then h
is a 1/2 — a/2-approximator for f.

Proof: First, the algorithm is well-defined since 0 < p < 1 for any value of g(z). Noting that
1 —p = Pr[h(x) = 1] can be written as (—1 — g(z))2/2(1 + ¢%(z)), it follows that for any fixed z,
Pr[h(z) # f(z)] = (f(z) — g(x))?/2(1 + ¢g*(x)), where the probability is taken over the random
choices made by h. Now considering the distribution over all instances z as well as h’s random
choices, we get

Prlh(z) # f(2)] < SE[(f — 9)°].

N —

O(Lemma 3)
A similar but slightly weaker randomized approximation method was given by Kearns, Schapire,
and Sellie [10]. Putting the results of this section together, we have the following.

Theorem 4 A concept class F is weakly learnable with membership queries with respect to the
uniform distribution if there are polynomials p and q such that for every f € F there is a set S with
IS| < p(n,s) such that - 4cq fQ(A) > 1/q(n, s), where s represents the size of f. In particular, for
every f in such a class the algorithm

1 1
rM (W(n, a0ns) dan, s>’5>

plus the approrimation scheme of Lemma 8 will with probability at least 1 —§ produce a randomized
1/2 —1/4q(n, s)-approximation of f. The algorithm runs in time polynomial in n, s, and log(1/6).

4 Positive Results
4.1 Weakly Learning DNF

Linial, Mansour, and Nisan [15] showed that AC?, the class of constant-depth circuits, is learnable
in superpolynomial but subexponential time with respect to the uniform distribution by proving
that for every ACY function f almost all of the “large” Fourier coefficients of f are coefficients of
parities of “few” variables. We show that an even stronger property holds for the Fourier transform
of any DNF function, a property which will be key to several of our positive results about DNF
learnability. The following definition will simplify the statement and proof of this property.

Definition 1 Let f be a DNF formula and let T; (with variables V;) be a term in f. Then for
every A C V;, define xa(T;) to be x a(Z), where T is any instance which satisfies T;.

Lemma 5 Let f be a DNF formula. Then for every term T; (with variables V;),

> F(A)xa(T) = +1.

ACV;

Proof: Consider a particular term 7T; of f. Let f; represent the restriction of f obtained by fixing
the variables in V; so that T; is satisfied. Then f; = +1. Since x5 = +1, fi(0) = E[fixg] = 1. Now
since f = > f (A)xa, the restriction f; is also a linear combination of the restrictions x4 of the
X 4’s obtained by fixing the variables in V; as above, that is,

fi= Z f(A)XA,i-

Ag{zlw-»wn}

For all A C V;, xa; = xa(T;) is a constant function. On the other hand, for all A ¢ Vj,
the restriction x4, is not a constant since some variables in x4 survive the restriction. Thus

fi(0) = > Acy, F(A)xa(T}), and as established above, f;(0) = 1. [(Lemma 5)

A particularly useful implication of the lemma for our purposes is that for every term 7; in f,
there is some A C V; such that |f(A)| > 27Vl Thus if even one term in a DNF f has O(logs)
variables then there is at least one Fourier coefficient of f which is inverse polynomially large. This
allows us to use the KM algorithm to weakly learn DNF with membership queries with respect to
the uniform distribution.

Theorem 6 The class of DNF formulas can be (% — 6—15)—approximated by a randomized learning al-
gorithm which uses membership queries, succeeds with probability 1—40, and runs in time polynomial
inn, s, andlog(1/0), where s is the number of terms in the target formula.

Proof: We assume that there is at least one term in f with at most log(3s) literals; otherwise,
f is sufficiently well-approximated by the constant —1 function. Thus by Lemma 5 there is at
least one Fourier coefficient (call if f(A)) of magnitude 1/3s. The parity x4 corresponding to f(A)
can be found with probability 1 — ¢ in time polynomial in n, s, and log(1/) by KM (1/3s,1,9).
As f(A) represents the correlation of x4 and f, g = sign(f(A))xa is an adequate approximator.
[(Theorem 6)

A related but more complicated algorithm yields improved accuracy (proved in the appendix):

Theorem 7 The class of DNF formulas can be (3 — Q(@))—appmximated by a randomized
learning algorithm which uses membership queries, succeeds with probability 1 — 9, and runs in time

polynomial in n, s, and log(1/4).

4.2 Learning Read-k DNF

Lemma 5 gives us that every term has at least one “large” Fourier coefficient associated with it.
However, conceivably a small set of large coefficients are shared by many of the terms, so there
may be very few large coefficients in the DNF formula. On the other hand, each coefficient (except
the constant coefficient) of a read-k formula may be shared by at most k& terms. We use this fact
to obtain an accuracy bound of 1/2 — Q(1/k) for the class of read-k DNF.

Theorem 8 For every k, the class of read-k DNF can be (% — lﬁik)—approximated by a randomized
learning algorithm which uses membership queries, succeeds with probability 1 — 9, and runs in time
polynomial in n, k, and log(1/4).

Proof: For any read-k DNF f we will show that there is a set S with |S| < 24n%k? such that
S acg FA(A) > ﬁ. The result then follows from Theorem 4.

To derive this bound, first consider the case k = 1. Lemma 5 implies that for each term Tj:
> acovi |f(A)| > 1 where 2Vi represents the power set of V;. Define S = U;2"i. Because k = 1, for
any i # j, 2¥1 N 2% = {@}. Thus, letting S; denote the set 2" — (),

YA =YY A,

AeS i A€ES;

We will assume that |f(0)] < %, since otherwise f is adequately approximated by a constant
function. Thus for each Tj, 3 4cq, |f(A)] = 2, which implies that S aes, J2(A) > (5/6)%/|Sil. So,

> Pz ()Y g

AeS i

By the restriction on f (6) we know that at least 5/12 of the instances satisfy f. Since the fraction of
instances which satisfy a term T; is 271Vil, 37,271Vl > 5/12 and so " 4c6 f2(4) > (2)3(5) > 1/4.

Now consider larger k. In this case, for any given set A we can have A € S; for up to (but no
more than) k distinct values of 7. Thus

> Pz Y)

AeS i AES;

and therefore } 4o f2(A) > ﬁ.

Finally, we need to bound |S|. In general, the set S above can be exponentially large even
for a read-once DNF. We get around this by considering only “small” terms when constructing S.
Specifically, we now let

s= U 2

Vil <log(24kn)

Because there are at most kn terms in a read-k DNF, the terms which are excluded from S are
satisfied by at most 1/24 of the instances. The included terms are therefore satisfied by at least

% . 2—14 = % of the instances, and using this value rather than 5/12 in the earlier analysis still gives
the desired bound. [)(Theorem 8)

4.3 Learning SAT-t£ DNF

We demonstrate the (strong) learnability of SAT-k DNF for constant k& by showing that every
SAT-k DNF is well-approximated by a function with small support.

Theorem 9 2 For any k, the class of SAT-k DNF formulas can be e-approzimated by a randomized
learning algorithm which uses membership queries, succeeds with probability 1 — 9, and runs in time
polynomial in n, s*, 1/¢*, and log(1/6).

Proof: We will show that there is some polynomially sparse deterministic function g such that
E[(f — 9)?] < ¢/2. The result then follows from standard arguments.

Let r = 8s/e and let g be what remains of f after removing any terms having more than log(r)
variables. Then E[(f — g)?] = 4Pr[f # g] < ¢/2. The inequality holds because each term removed
from f covers at most an €/8s fraction of the instance space. To see that g has small support,
let s’ represent the number of terms in ¢ and define P;(Z), 1 < i < &, to be +1 if ¥ satisfies
the ith term of g and 0 if ¥ does not. At most log(r) variables are relevant for P; and thus
the Fourier representation of P; has no more than r non-zero coefficients. Using the principle of

2A similar result has also been shown by Lipton using a somewhat different analysis [16].

inclusion-exclusion we can create a function P’ from the P;’s which is (rs’)*-sparse and which is 1
when ¢ is satisfied and 0 otherwise. Specifically, let

P,:ZPZ&*ZPHPZQ+ Z PilPizpiS*"'f(*l)k Z Pil"'Pik'
i1

11 <12 11<12<13 11 <<l

It can be verified inductively that this polynomial has the claimed properties. Noting that g =
2P’ — 1 completes the proof. [J(Theorem 9)

By restricting the size of terms in the SAT-k DNF’s considered we can extend the above to
a distribution-free learning result (this generalizes a similar result for SAT-1 (disjoint) DNF by
Khardon [11]).

Theorem 10 For any k, the class of SAT-k O(logs)-DNF formulas of s terms can be learned
exactly by a deterministic learning algorithm which uses membership queries and runs in time
polynomial in n, s*, 1/¢*, and log(1/6).

5 Characterizing Learnability in the Statistical Query Model

In this section we present results that characterize when a given class of functions is weakly learn-
able under any given distribution in the statistical query model. An important corollary of this
characterization is that the class of parity functions on log(n) variables (that is, the class of func-
tions x4 where |A| = O(logn)) over {0, 1}" cannot be weakly learned with a polynomial number of
queries with inverse polynomial tolerance in this model. This immediately implies that DNF and
decision trees, both of which contain the log(n)-bit parities as a subclass, are not efficiently weakly
learnable in the statistical query model.

Our lower bounds are particularly strong in that they are information-theoretic (and thus do
not rely on any unproven assumptions), and for our matching upper bounds we actually give (non-
uniform) polynomial time weak learning algorithms. Thus, the situation in the statistical query
model is quite different from that in the PAC model, where information-theoretic learnability
provably does not imply polynomial time learnability given certain cryptographic assumptions.

In order to present our characterization, we need the following definition.

Definition 2 For F a class of boolean functions over {0,1}" and D a distribution over {0,1}",
we define SQ-DIM(F, D), the statistical query dimension of F with respect to D, to be the largest
natural number d such that F contains d functions fi1, ..., fq with the property that for all i # j we
have:

1
|Prplfi = fj] — Prplfi # fi]| < s
The main theorems of this section are the following.

Theorem 11 Let F be a class of boolean functions over {0,1}" and D a distribution such that
SQ-DIM(F,D) > d > 16. Then if all statistical queries are made with tolerance at least 1/d1/3, at
least d'/3 /2 statistical queries are needed to learn F to error less than 1/2 —1/d>.

Theorem 12 If F is a class of boolean functions over {0,1}" and D is a distribution such that
SQ-DIM(F,D) = d, then there is a non-uniform polynomial-time (in d) algorithm to weakly learn
F with respect to D in the statistical query model that makes d queries of tolerance 3% and finds

a hypothesis with error at most % — #.

If we think of F and D as function and distribution ensembles (one for each n), then the
above theorems imply the following. If for all polynomials p(-) and infinitely many n we have
SQ-DIM(F, D) > p(n), then F is not weakly learnable in the statistical query model with respect to
distribution D. On the other hand, if there exists a polynomial p(-) such that for all sufficiently large
n, SQ-DIM(F, D) < p(n), then there is a non-uniform polynomial time weak learning algorithm
for F with respect to D in the statistical query model.

As promised, we have the following corollary.

Corollary 13 There exists a constant ¢ > 0 such that Q(ncl°8™) statistical queries of tolerance
O(1/nc1°8™) are required to weakly learn the classes of polynomial size DNF formulae and polynomial
size decision trees with respect to the uniform distribution. Thus, these classes are not efficiently
learnable in the statistical query model.

Because the proof of Theorem 12 is significantly easier than the proof of Theorem 11, we give
it first.
Proof of Theorem 12: The nonuniform algorithm has “hardwired” a maximal set of functions
fi,..., fasuch that for all i # j, |(fi, f;)] < d—lg,. The algorithm makes d queries, each with tolerance

#. The ith query g; is simply a request for the correlation of the target function with f;, that is,
9i(Z,0) = Lf;(¥). By assumption, the set {f1,..., f4} is maximal (with the desired property) so at
least one query g; will return a value at least dig — 7 > 335. Thus we have found an f; such that
(fi, [) > 3%3 -7 2> 3%, where f is the target function, and we can use f; as our weak hypothesis.
[(Theorem 12)

In the following proof, it will be helpful to keep in mind that our eventual approach will be to

perform a Fourier analysis not only of the functions in the target class F, but also of the query
function g : {0,1}" x {+1,—1} — {+1, —1}. Recall that such a query is a request from the learner
for an approximation to Ep[g(Z, f(&))], where D is the target distribution and f is the target
function.
Proof of Theorem 11: In order to prove this theorem, we will need to use an extension of
the Fourier theory to an arbitrary distribution; this extension has been examined in the learning
theory literature before by Furst, Jackson and Smith [7]. Thus let D be an arbitrary probability
distribution over {0, 1}". Then for any two real-valued functions f and g over {0,1}", we can define
the inner product with respect to D by

{(f.9)p =Eplfgl= > DIaf(2)(@).

ze{0,1}m

It is easy to verify that (,) p is in fact an inner product for the vector space of all real-valued functions
over {0,1}", and we shall use this in our analysis. If, as usual, we regard the boolean functions
fi,-.., faasbeing {+1, —1}-valued, then the assumption of the theorem gives that |(f;, f;)p| < 1/d®
for all 7 # j. It is also easy to see that for any {+1, —1}-valued function f, (f, f)p = 1.

In the analysis to follow, we wish to use the given functions fi,..., fq as the beginnings of a
basis for the vector space of all functions. To do this, we will need the following lemma.

Lemma 14 The functions f1,..., fq are linearly independent.
Proof: Without loss of generality, assume for contradiction that we could write f1 = > ;50 @i f;

for some real coefficients ao, ..., ay. Then we have

0 = Ep
i>2

(fi = Zaz’fi)Ql
= ED[fIQ] — QZaiED[flfi] + Z aiajED[fifj]

i>2 i,j>2

= 1-2> aEplfifil+> ai+ > ic;Ep[fif)]

i>2 i>2 §,§>2,i]

where we have used that Ep[f?] = 1 for all i. Our goal is to reach a contradiction by showing that
this final expression is strictly larger than 0. Let us define amyax = max{|a;| : ¢ > 2} > 0, and use

Omax to simplify the expression above. Then 1+ ;59 a7 > 1+ a2,,,. Also, 2350 aEp[f1fi]| <
Qamax/dQ since ED[flfz] = <f17fi>D < 1/d3 for all ¢ 7é 1. Finally, ‘Zi,jZZ,i;ﬁj aiajED[fifjH <
a?../d. So the above sum is at least: 1+ o2, — 2amax/d — o2, /d, which is always positive.

O(Lemma 14)

Before extending fi,..., fq to a complete basis, we argue that without loss of generality we
can assume that the support of the distribution D is all of {0,1}". If we regard D as a linear
transformation of the vector space of all real functions over {0,1}", this is simply saying that D
has full rank. The reason we may assume this is that if D does not have support {0,1}", we can
instead carry out the ensuing analysis using a distribution D’ that does have support {0,1}", and is
obtained from D by taking an infinitesimally small amount of weight away from the support of D,
and spreading this weight uniformly among the vectors not in the support of D. Then the functions
fi,---, fm will still be approximately orthogonal, and it is not hard to prove that any statistical
query lower bound we can prove for D’ must also hold for D, since the learning algorithm cannot
distinguish D and D’ (details are omitted).

Now using the Gram-Schmidt process, which applies to any inner product space, we may extend
the functions fi,..., fq to obtain a basis fi,..., fq4, fa+1,..., fon for the vector space of all real
functions over {0,1}" with the property that for any ¢ > d 4+ 1 and any j, (f;, f;)p = 0, and for
any 4, (f;, fi)p = 1. Note that our basis may not be orthonormal due to the fact that for i,j < d,
(fi, fj)p may be as large as 1/ d3. Also, note that we may assume there are 2" basis functions:
since D has full rank, the 2" delta functions on {0, 1}" are orthogonal and non-zero with respect
to D.

We now wish to extend fi,..., fan to a basis for the space of all real functions on {0,1}" x
{+1,—-1}. To accomplish this, it will be most convenient to use an inner product defined by
a distribution D on {0,1}" x {+1,—1} that extends the distribution D, where D is simply the
product of D and the uniform distribution on {41, —1}. To extend fi, ..., fon, we define for each
1 < < 2" the function h;(Z,y) = yfi(Z), where & € {0,1}" and y € {+1,—1}. We also regard
each of the original basis functions f; as a function over {0,1}" x {+1, —1}, where f;(Z,y) = fi(Z).
We now verify that fi,..., fon together with hi,...,hon is in fact a basis for all functions on
{0,1}"™ x {41, =1} under the inner product (,) 5. We have

(i,)5 = SEIh(E) 1(2)] + SEplhi(@, ~1) ()] = SEpLffi (@] + SEp[—fifs ()] = 0

and

(hi hj)p = %Ep[hi(f, 1)h;(Z,1)] + %ED[hi(f, —1)h;(Z,—1)] = Eplfif;]

and Ep[f;f;] = 0 unless i,j < d, in which case it is bounded by 1/d3, or unless i = j, in which
case it equals 1. So by the same argument as in Lemma 14 we have 2 - 2" independent functions,
forming a basis for functions over {0, 1}" x {+1, —1}.

Now let g : {0,1}" x {+1,—1} — {+1,—1} be any statistical query. We will soon perform
a Fourier analysis of the expectation Ep|g(Z, f(Z))], which is the quantity that is approximated
by the response of the query. Because we have a basis, we can write g = > ,~; aifi + > ;=1 Bihi
for some real coefficients «; and ;. Note that it is not true that «; = (g, f;) D_ and 3; = (g, hs) B
because we do not have an orthonormal basis. However, the following bound on the coefficients
will serve our purposes.

Lemma 15 Ifg = >~ aifi+> ;> Bihi, where the f; and h; are as defined above, then |oyl,|5i| < 2
for all 4. a B

Proof: Without loss of generality, let ay > 0 be the largest coefficient. Since we have an inner
product space, we can define the fi-component of g by

(f.9)pf1 = (061 +> ailf, fip + Zﬁi(fhhi)[;) f1.

i>2 i>2

Again due to the properties of an inner product, we must have

19l = VEplg?] =

a1+ ailfi, fiyp + Y Bilfi hi) |-

i>2 i>2

But each summation inside the absolute value is at most aj/d?, so the absolute value is at least
a1 —2a1/d* > a1 /2 for d > 2. Since ||g|| = 1, the lemma follows. [(Lemma 15)

We are now finally in position to analyze the quantity of interest, the expected value of the
query g. Let the target function be f; for some 1 < j < d; thus, we choose as the target one of the
original nearly orthogonal functions in the target class F. We may write:

Eplg(Z, f;(Z))] = Ep Zaifi(f)‘i‘Zﬂihi(fafj(f))

i>1 121
= ZaiED[fi]—FZ,BiED[fifj]
i>1 i1
= C+)Y_ Bilfifi)p
i<d

where C' = }",~; o;Ep|[fi] is a constant independent of the target function f; and we have used the
fact that (f;, f;)p = 0 unless i < d. Now

B~ 2 < X Bl Ji)p < i +

2
i<d d

since (fj, fj)p = 1 and (fi, f;)p < 1/d3 for i # j, and |B;| < 2 for all i by Lemma 15. Thus, we
see that the only contribution the target function makes to the expected value of the query is in
determining the coefficient §;, plus an O(1/ d?) contribution. For the lower bound, the statistical
query g will always be answered with the value C. We now analyze how many functions in f1,..., fg
can be eliminated by this answer. For this, we need the following final lemma.

Lemma 16

dopi<2

i<d

Proof: Using Lemma 15 and the 1/d® bounds on the inner products, it is easy to verify that
Ej [g2] = 1 is bounded above and below by Zigd 0@2 + Zigd ﬁiz + 16/d. This implies Zigd @2 <
1—Y,cq0? +16/d < 2 provided d > 16. O(Lemma 16)

Now if the query g is made with tolerance as large as 1/ d'/3, then by the preceding arguments
the function f; is eliminated by the query response C only if §3; exceeds 1 / d'/3. But by Lemma 16,
if r is the number of functions f; in f1,..., fq such that 3; exceeds 1/al1/37 then we must have
r(1/d"/3)2 < 2, or r < 2d?*/3. This shows that at least d'/3/2 queries of allowed approximation
error bounded above by 1/ d'/3 are required in order to eliminate all the functions in f1, ..., fg that
are not the target function. If there are even two functions remaining, by choosing adversarially
between the remaining functions we may force the error of the learning algorithm’s hypothesis to
be 1/2 — 1/d® with significant probability. O(Theorem 11)

Note that in the above proof, even if the learning algorithm is randomized, if it makes only
d'/3=¢ queries for some constant € > 0, it will eliminate only a small fraction of fi,..., fg. So if
the adversary picks f; at random from fi,..., f4, with high probability it can answer as above for
each query and so again with high probability the algorithm’s error will be close to 1/2.

It is also instructive to note that if the tolerance 7 = 0, then over the uniform distribution the
statistical query model allows one to make membership queries (one can ask whether the probability
of a specific labeled example is non-zero). So the algorithmic results in the previous sections prove
that such a lower bound cannot hold when 0-tolerance queries may be made.

10

References

[1]

[2]

[17]

[18]

Howard Aizenstein, Lisa Hellerstein, and Leonard Pitt. Read-thrice DNF is hard to learn
with membership and equivalence queries. In Proceedings of the 33rd Annual Symposium on
Foundations of Computer Science, pages 523-532, 1992.

Howard Aizenstein and Leonard Pitt. Exact learning of read-twice DNF formulas. In Pro-
ceedings of the 32nd Annual Symposium on Foundations of Computer Science, pages 170-179,
1991.

Howard Aizenstein and Leonard Pitt. Exact learning of read-k disjoint DNF and not-so-disjoint
DNF. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages
71-76, 1992.

Dana Angluin, Michael Frazier, and Leonard Pitt. Learning conjunctions of Horn clauses.
In Proceedings of the 30th Annual Symposium on Foundations of Computer Science, pages
186-192, 1990.

Avrim Blum and Steven Rudich. Fast learning of k-term DNF formulas with queries. In
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 382—389,
1992.

Nader H. Bshouty. Exact learning via the monotone theory. In Proceedings of the 34th Annual
Symposium on Foundations of Computer Science, pages 302-311, 1993.

Merrick L. Furst, Jeffrey C. Jackson, and Sean W. Smith. Improved learning of AC° functions.
In Fourth Annual Workshop on Computational Learning Theory, pages 317-325, 1991.

Thomas R. Hancock. Learning 2uDNF formulas and kp decision trees. In Proceedings of the
Fourth Annual Workshop on Computational Learning Theory, pages 199-209, 1991.

Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. In Proceedings of
the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages 392-401, 1993.

Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward efficient agnostic learning.
In Fifth Annual Workshop on Computational Learning Theory, pages 341-352, 1992.

Roni Khardon. On using the Fourier transform to learn disjoint DNF. Unpublished
Manuscript, 9 1993.

Michael Kharitonov. Cryptographic hardness of distribution-specific learning. In Proceedings
of the 25th Annual ACM Symposium on Theory of Computing, pages 372—-381, 1993.

Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier spectrum.
In Proceedings of the Twenty Third Annual ACM Symposium on Theory of Computing, pages
455-464, 1991.

Eyal Kushilevitz and Dan Roth. On learning visual concepts and DNF formulae. In Proceedings
of the Sixth Annual Workshop on Computational Learning Theory, pages 317-326, 1993.

Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,
and learnability. In 30th Annual Symposium on Foundations of Computer Science, pages 574—
579, 1989.

Richard Lipton. Personal communication.

Yishay Mansour. An O(n!°81°6™) learning algorithm for DNF under the uniform distribution.
In Fifth Annual Workshop on Computational Learning Theory, pages 53—61, 1992.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142,
November 1984.

11

6 Appendix

Proof of Theorem 7:
The proof utilizes the following relationship between a function and its restrictions.

Lemma 17 For any variable z; in function f let fo (f1) be the restriction of f obtained by fixing
x; =0 (x; =1). Also, let Sy and Sy be sets of subsets of variables such that for each A € Sy U Sy,
x; € A. Then for all S such that S D SoU ST U{AU{x;} | AeSyUSi},

PR RCIES (z B+ Y f%(A)) .

AeS A€Sy A€eSy

Proof: First, observe that) 4cg, f2(A) + > Aes, f2(A) < > AcSoUS: f2(A) + f2(A). Tt follows
from the definition of the Fourier transform that for A € So U S, fo(A) = f(A) + f(AU {z;}) and
fi(A) = f(A) — f(AU {z;}). Thus for any such A, fZ(A) + f2(A) = 2(f2(A) + f2(AU {z;})).
Summing over all A € Sy U S; gives the result. O(Lemma 17)

For the proof of Theorem 7, we will show that for every DNF formula f there is a set S with
|S| < 64s° such that 3" 4cq f2(A) > log(s)/8s; the result then follows from Theorem 4.

For the moment we restrict our attention to log(s)-DNF. For the set of variables V; in a term T;
of f,let {f.} represent the 21Vl restrictions of f obtained by fixing the variables in V; in all possible
ways. Notice that if S is a set such that 2 C S then, by recursive application of Lemma 17 on
the variables in V;, >~ 4cq f2(A) > 1/2IVil 32 f2(0). One of these restrictions satisfies T}, and thus
for the associated f. we have f.(0) = +1. Therefore

> fA(A) = 1/21M, (1)

AeS

While this inequality can be derived directly from Lemma 5, the derivation above gives the
flavor of our approach to improving the accuracy bound. Conceptually, we can imagine building a
decision tree to approximate a given DNF f. When we reach a point in the tree at which the value
of the DNF is determined (+1 or —1) then we create a leaf with the appropriate value. At some
depth we terminate the tree with leaves having value 0. Lemma 17 then implies that the expected
value of the squared leaf values represents the sum (over the sets of variables on each path in our
tree) of the squares of Fourier coefficients of f. Thus the above bound follows from the fact that
for any term T; in a DNF we can construct a depth log(|V;|) tree 7 as described such that at least
one leaf of 7 has value 1. We improve on this bound by building a somewhat deeper tree.

First, we formalize the tree-building notion above. Recursively define a restriction tree for a
DNF f as follows. At any point in the construction of this tree we are at a node R and are building
the restriction tree for some function f. a restriction of f. If f. is a constant function then we label
R with the triple (1, P,(, f.) and stop. Here P is the set of variables labeling edges on the path
from R to the root; these labels will be defined shortly. If f. is not constant then we label R with
(2-Wil, P, V;, f.), where T} is the smallest term in f. (ties are broken arbitrarily). Next we select
a variable z; in T; and label one of the edges leaving R with z; = 0 and the other with x; = 1.
For each child C; of R we repeat this process, building the restriction tree for the function formed
by restricting f. according to the label on the edge from R to C;. We begin the overall process of
building the restriction tree for f by creating a root node and setting f. = f.

We claim that every label («, P, V, f.) of a node R of the restriction tree satisfies the following
properties:

e f. is a restriction of f on the variables in P, in particular, the restriction of these variables
according to the labels on the path from R to the root.

® > Acov fg(A) > .

12

The first property is an obvious consequence of the construction. The second follows from the
reasoning used to establish the bound in (1) for nonconstant f.. For constant f., since f. € {+1,—1}
then f2(0) = 1.

Now consider the nodes at depth log(s) of the restriction tree. Assume for now that all s
possible nodes are present in the tree. Then the numerical value of at least one of these node labels
is 1 since on at least one of the paths we are satisfying the smallest term in a restriction of f with
every assignment and there are initially at most log(s) variables in any term. Similarly, at least
one other node has value at least 1/2, in particular the node which corresponds to choosing the
“wrong” assignment at the first step and choosing satisfying assignments thereafter. Furthermore,
there are at least two nodes with value 1/4, four with value 1/8, and in general 2°~! with value 27
for 1 <i <log(s). Therefore the expected value of a node at depth log(s) is at least log(s)/2s.

Finally, let the label of node R; be (ay, P;, Vi, f.), and let S = Ug, 259V where the union is over
all nodes R; at level log(s) in the restriction tree for f. Clearly |S| < s3. Now applying Lemma 17
bottom-up from level log(s) — 1 of the tree, we find that

S f2(a) > 986

Aes 2s

To complete the proof we remove the assumptions which have been made. First, note that if
there are fewer than s nodes at depth log(s) of the restriction tree it is because one or more paths
to that level was cut off when f. became a constant function at some higher-level node. This can
only improve our bound, since this is equivalent to giving all the missing nodes value 1.

We remove the assumption that each term has at most log(s) variables in two steps. First, we
relax the assumption slightly and allow up to log(4s) variables in each term of f. We can build a
restriction tree for such an f exactly as before, but now we will consider the nodes at level log(4s).
This changes only constant factors in the preceding analysis. To handle arbitrary DNF, we modify
our definition of restriction trees slightly: if at any node R the smallest term T; of the restricted
function f, has |V;| > log(4t) then we label R with (1/4, P, 0, f.) and stop. This labeling maintains
the label properties identified above since f.(0) < —1/2. Furthermore, by an argument similar to
that above, cutting off the tree in this way cannot hurt our lower bound. Finally, note that the set
S created from this tree has at most 64s elements since each of the sets in the labels has at most
log(4s) elements. [J(Theorem 7)

As a corollary of this proof we can show that for every DNF f with s terms there is a decision

tree of depth O(log(s)) which (3 — Q(M))—approximates f

s

13

