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Kearns introduced the “statistical query” (SQ) model as a general method for pro-
ducing learning algorithms which are robust against classification noise. We extend
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(1) Smallness of dimension of the classes of both the target and the queries.

(2) Independence of the noise variables.

Persistence restricts independence, forcing repeated invocation of the same point x
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Jackson’s Harmonic Sieve, which learns DNF under the uniform distribution. This
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1 Introduction

How can one learn concepts from examples? Sampling techniques in statistics
indicate a way: A teacher provides the information {(x, ` = f(x))}x∈S, where f
is the target concept and S is a large enough random sample from the domain
X on which the concepts are defined. Using this information, the learning
device (or algorithm) computes an approximation concept h. The imprecision
of h is measured by the “generalization error” D(h 6= f), which denotes the
probability of the event {h 6= f} with respect to the distribution D on the
domain X.

These ingredients are the essence of the “probably approximately correct”
[PAC] learning paradigm. However, there are several modes of PAC learning,
with significant differences between them. In passive sampling, the indepen-
dent sample S of size m is distributed according to Dm, where D is the basic
underlying distribution used to measure the generalization error (D need not
be known explicitly to the learner), and no other way of getting examples is
allowed.

The ability to select sample points actively, possibly at random using a spe-
cific distribution P on X, usually carries the generic name of “membership
querying.” Such PAC learning with active querying may well have a mean-
ingful power gap—in extent and speed—over passive sampling. This has been
proved in some cases (e.g., assuming hardness of cryptographic primitives [15–
17]).

In other cases, such as the DNF learning problem discussed below, the exis-
tence of this power gap has not been settled. It is worth remarking that, in
some cases, with passive sampling one can simulate (with reasonable cost) cer-
tain other sampling distributions which figure in the learning algorithm (e.g.,
by filtering [7,20]). So formal proofs of lower bounds showing a power gap are
usually not easy.

In noise-robust learning, the task is to get good approximations to the noise-
free target f even if the examples (passive or active) are corrupted by some
noise. The main contribution of this article is in rendering certain active-
query learning algorithms robust under “persistent classification noise.” We
adapt Kearns’ technique [13], which works for algorithms that are cast to use
statistical queries [SQ] only. An SQ query is an evaluation of an expectation
PG(x, f(x)), where G is a {0, 1}-valued function. The value PG is required
to be precise within a tolerance τ which is not very demanding. This allows
an evaluation of PG by a moderate number of queries at random points.

Kearns’ original formulation of the SQ model requires the SQ evaluation dis-
tribution P to coincide with the error measuring distribution D, which clearly
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corresponds to passive sampling in PAC algorithms. To treat noise in active
(membership) querying, we found it useful to extend the form of SQs allowed:

(1) Allow “second order” queries. This means that each PAC example con-
sists of a pair (x, y) ∈ X2 with label ` = (f(x), f(y)). The corresponding
SQ form is an expectation QG(x, y, f(x), f(y)).

Moreover
(2) The distribution Q over X2 used in the SQs is arbitrary. Specifically, it

is not necessarily a product distribution.

SQs can be—and often are—viewed as coefficients of f with respect to some
basis of a space of functions over X. Passage to sample-based PAC learning
involves simultaneous evaluation, within a tolerance τ , of all the SQs in the
algorithm by a single large enough sample. Clearly, the natural tool to use is
a Vapnik-Chervonenkis type result on “uniform approximations” of a family
of expectations by empirical means over a sample.

For the class {PG(f)} we need the uniform approximation in the form given
by Haussler [10], assuming finiteness of the “dimensions” of the class of targets
and of the class of functions G figuring in the SQs. These are, respectively,
the VC dimension (for the targets) and combinatorial dimensions (for the
G-class). We do not give the definitions of dimensions here since for the spe-
cific applications (in Section 5) only one fact is needed: the dimension of a
class is upper-bounded by the logarithm of its cardinality. Moreover, uniform
approximation based on cardinality is also given by Haussler [10].

Now suppose that the examples are corrupted by classification noise. It is
possible to transfer the effect of the noise to the evaluation of the SQ, say
PG(x, f(x)), while keeping the target f(x) noise-free. In fact we show in Sec-
tion 3 how to compensate for the bias (to the expected value) and accommo-
date the variance (caused by the random noise process) within the tolerance
τ .

Noise analysis of second-order membership querying, in PAC or SQ form,
forces one to closely scrutinize the standard working assumption on classifica-
tion noise, namely that it affects a random label flip to each x, independent
over all x ∈ X. What happens if the point x appears twice or more in a sam-
ple? To stipulate that the first encountered label persists is more realistic, but
more difficult to tackle. We argue that an essential difference in “persistent
classification noise” arises only when the sample point is (x, x). In Section 4
we show how to accommodate this case, and argue that other collisions usually
have negligible effect.

In Section 5 we discuss, at some length, two applications: persistent noise-
robustness of a “weak parity” algorithm [9] and of the “harmonic sieve” algo-
rithm for learning DNF [11].
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2 Statistical queries, empirical evaluation

Learning algorithms which use only the values of statistical queries can be
made noise robust by offsetting the noise effect on the SQs. This is the basic
claim. To complete the picture, one has to evaluate all the values of the SQs
(provided their number is reasonable) by a sufficiently large random sample.
This is done here after giving a definition of SQs.

Let (X,D) be a domain with probability distribution D, Φ a class of ±1-valued
target functions on X. A statistical query (SQ) is given by:

(i) A functional G(x, `) mapping X × {−1, 1} to [−M,M ];
(ii) A distribution P on X and a tolerance parameter τ ; (P, τ) will be common

to a family of SQs indexed by I, Q = {Gi, i ∈ I}. Note that some algorithms
may require several distinct families of SQs.

An admissible value B of an SQ G on the target f should satisfy

(2.1) |B − PG(x, f(x))| ≤ τ,

Kearns’ original definition restricts the range of G to {0, 1} and identifies P

with D—the accuracy measuring distribution. The extension here allows more
flexibility, especially in converting membership-queries to SQs, without much
change in the noise-robustness proof.

An SQ Learning Algorithm A is one which interacts with the target f ∈ Φ only
via a family (or several families) of SQs. In a query step, A poses a functional
G and gets [from an “oracle”] an admissible value B of PGf = PG(x, f(x)).
A learns with (1− ε)-accuracy if upon termination it produces an hypothesis
h such that D(f 6= h) < ε.

Usually, an SQ-algorithm A is deterministic. But one can attach a P-random
sampling algorithm. The idea is to get a τ -admissible value of PGf by an
average ESGf over a finite sample S of size m, large enough so that for any
P and all Gf which occur in the algorithm the approximation is uniformly
τ -small.

Theorem 2.1 Let {G(x,−1)}, {G(x, 1)}, G ∈ Q, be families of functionals
with range [−M,M ], each family of pseudo-dimension ≤ q [19]. Assume the
VC dimension of Φ is at most d. Then

(2.2) Pm{|ESGf − PG(x, f(x))| < τ} ≥ 1 − δ

for all f ∈ Φ, G ∈ Q, [Pm is the product probability distribution of samples of
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size m], provided

(2.3) m ≥ O[ϕ(d + q, δ, τ/M)], ϕ(d, δ, τ) =
d

τ 2
log

d

τ
+

1

τ 2
log

1

δ
.

The big-O notation is the standard one. Also, we write ’Constant’ for a positive
value which does not depend on the other arguments in a given estimation.

PROOF. This is a claim of uniform approximation of expectations by sample
means, which originated in the works of Vapnik. The sufficient sample size
bound in (2.3) is valid for a family R of dimension O(q + d). But the proof
for the sample bound relies only on the moderate size of a τ -net of such R
w.r.t. L1(P) norm [19,10, Theorems 2,7]. The family R we consider here is
Q(x, Φ) or equivalently {G(x,±1) · I(f = ±1), G ∈ Q, f ∈ Φ}, where I(C) is
the indicator function of C. A τ -net for it is obtained by the cross product
of τ/2-nets for the factors, so that the size corresponds indeed to that of a
Constant · (d + q)-dimensional family. This, as we noted, implies the bound
(2.3) on the sample size.

Remark: The composition of an SQ algorithm with the P-sampling module
should give an output h such that

Pm{D(h 6= f) ≤ ε} ≥ 1 − δ,

the tolerance τ for the SQ part will normally depend on ε, where (1 − ε) is
the accuracy (w.r.t. D). If P = D one gets the strict-PAC learning notions. If
P 6= D, the algorithm is using membership queries.

3 Statistical queries, evaluation under noise

In this section we show how to offset the effect of noise on ”simple” SQs, as
defined in Section 2. The more complex situation with second order SQs will
be dealt with in Section 4.

The basic feature of isotropic classification noise of uniform intensity η < 1/2
is

(3.1)

At each point x ∈ X, the value f(x) is corrupted to

f(x) · ξ(x), the random variable ξ(x) is (−1, 1) with

probabilities (η, 1 − η).
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It is possible to offset the bias created by this noise [1]:

(3.2) Eξ(x)G(x, f(x)ξ(x)) = (1 − η)G(x, f(x)) + ηG(x,−f(x)),

where G is the functional of a SQ. A similar relation (3.2′) holds for −f in
place of f . From (3.2) and (3.2′), the noise-free value G(x, f(x)) is eliminated
and expressed by

(3.3) G(x, f(x)) = Eξ(x)G
comp(x, f(x) · ξ(x)),

where

(3.4) Gcomp(x, `) = (1 − 2η)−1[(1 − η)G(x, `) − ηG(x,−`)].

(3.3) shows how to offset the bias, by passing from G to the “noise-compensating”
functional Gcomp. For the value of the SQ we have then

(3.5) PGf = P[EξG
comp(f, ξ)].

The variance issue of the noise comes up when (3.5) is approximated by a
sample with noise-corrupted labels. To get concentration (w.h.p., within the
tolerance τ), some form of independence of the noise variables ξ(x) is required.
For the easiest-to-treat model (model I in §4) we assume independence of the
ξ(x) for all (occurrences of) x in the sample-sequence S.

Theorem 3.1 Assume the dimension conditions for Theorem 2.1. Let the
noise variables ξ(x) be independent for all x in the sample sequence S. Let

∆ =

∣∣∣∣∣∣
PG(x, f(x)) − 1

|S|
∑

y∈S

Gcomp(y, f(y)ξ(y))

∣∣∣∣∣∣
.

Then

(3.6) ProbξP
m {∆ > τ} < δ,

holds uniformly for all f ∈ Φ, G ∈ Q, provided

(3.7) |S| = m = Ω[ϕ(d + q, δ, τ(1 − 2η)/M ],

ϕ given in (2.3).

PROOF. We decompose ∆ into

(3.8)
PG(x, f(x)) − 1

m

∑
y∈S

G(y, f(y))

− 1
m

∑
y∈S

[Gcomp(y, f(y)ξ(y)) − G(y, f(y))] = A + B

6



where A comprises the first two terms and B is the rest. Note that ξ does not
enter into A. Therefore, by Theorem 2.1, (3.7) implies that

(3.9) Pm{|A| ≥ τ/2} ≤ δ/2.

Now B = 1
m

m∑
k=1

bk(ξ(yk)), where the terms in this average are independent,

have 0 expectation (w.r.t. ξ) by (3.3), and have range of size Constant(1 −
2η)−1. Using Hoeffding’s inequality [19, Appendix B]

(3.10) Probξ{B ≥ τ/8} ≤ exp{−mτ 2(1 − 2η) · Constant}.

This probability estimate holds for a single f . Multiplying both sides of (3.10)
by the size N(τ/8, `1[Q(Φ)|S]) of τ/8-net (cf. [10]), one gets a probability
estimate for the event holding for any net element. Then upon relaxing τ/8
to τ/2 on the left hand side of (3.10) we get, uniformly for all f ∈ Φ, G ∈ Q

(3.11)

Probξ{B ≥ τ/2}
≤ exp{ −Constant mτ 2(1 − 2η)

+Constant (d + q) log[(d + 1)τ(1 − η)]},

the positive term in the exponent comes from the size estimate for the τ/8
net mentioned above. Now to make (3.10) less than δ/2, m has to be large as
stated in (3.7), and then (3.9) holds too, and the theorem is proved.

Notice that estimating A involved only Pm of the noise-free sample, while that
of B involved only the independence of the noise variables ξ(x).

Theorem 3.1 holds also for variable noise rate η(x). The compensating func-
tional in (3.4), offsetting the noise bias is locally defined at x; the approxima-
tion of the SQs’ values by noise-corrupted sample averages in (3.7), (3.8) have
the same proof. A problem arises in implementing an efficient noise-robust
algorithm when the noise level η(x) is not known. If η is constant then, as
Kearns [13] noted, the algorithm should be repeated with several sufficiently
close different values of η. Then among the candidate outputs, the one with
minimum disagreement with the given sample is chosen.

Noise-robustness proofs for Kearns’ type SQ-algorithm were given before [13,1].
The proof of Theorem 3.1 here is more systematic and as we’ll see, will cap-
ture extended SQs and more difficult noise models (including variable rate as
noted above). In particular P-sampling when P 6= D falls under membership
queries. In an extreme case where P is concentrated at x∗ (a delta function),
the P-sample keeps asking for the value (label) at x∗. Then for model I below of
“full sample independence,” the correct noise-free label is simply obtained by
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majority. In such cases it is more realistic to consider the “persistent noise”
model (model III below). In connection with second order queries, we also
consider a pair-consistent model (model II below).

4 Second order queries, classification noise models

Queries of order r = 2 arise when a distribution Q on X 2 is used for sampling.
The SQ form is

QFf = Q[F (x, y, f(x), f(y))]. (1)

Such queries can express second moments—correlations between shifted val-
ues of f—and they are needed for the efficient learning algorithms we discuss
in Section 5. The issue of noise-free uniform approximation of {QFf} is es-
sentially the same for r = 2 (or r ≥ 2) as was the approximation of {PFf}
for r = 1, i.e., the analogue of Theorem 2.1 holds.

Note that one random draw from Q gives a pair (x, y), with corresponding
example (x, y, f(x), f(y)). The noisy version of this example is denoted by
(x, y, f(x)ξ(x), f(y)ξ(y)). To specify precisely a classification noise model for
second-order queries, we distinguish three cases, based on the extent of inde-
pendence of the noise variables ξ(x), especially when the same x occurs at
different places in the sample.

Model I: Independent. Any set of occurrences of ξ(x) is independent.

Model II: Pair-consistent. If the pair (x, y) is drawn (according to the
pair distribution Q) and x = y, then ξ(x) = ξ(y). In other words, the noisy
example corresponding to such a pair is (x, x, f(x)ξ, f(x)ξ), where ξ is the
constant +1 or −1 chosen (once) according to the noise variable ξ(x). The
noise variables ξ(x) are otherwise independent. Specifically, if a given x0 occurs
in two different pairs, the noise value (+1 or −1) applied to the label f(x0)
may be different in each pair. Technically, we should write ξ as a function of a
pair (x, y) in this model, but for notational simplicity we will continue to write
ξ(x) and ξ(y) below with the understanding that when the noise is applied to
an example (x, y, f(x), f(y)) with x = y then ξ(x) = ξ(y).

Model III: Persistent. Any set of occurrences of ξ(x) with distinct values
of x is independent. But once a given x0 appears in any pair drawn, the
value ξ(x0)—and hence the label f(x0)ξ(x0)—persists for this example (so this
model guarantees pair-consistency) and for all future examples containing x0.
As discussed further below, in this model we find it convenient to think of
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ξ(x) not as a random variable but instead as a randomly chosen function of
x.

Thus each model allows (strictly) more dependence between the noise variables
than the preceding model. Note also that while we will primarily be interested
in these models as applied to second order examples, Models I and III both
apply equally well to first order examples (Model II reduces to Model I in this
case).

Our goal is to learn in Model III, the persistent classification noise model
introduced (for first order examples) in [8]. This noise model is closely related
to Model I, which (in its first order form) is a standard noise model for PAC
learning without membership queries. However, Model I is not appropriate for
membership query algorithms, in which a simple resampling strategy easily
eliminates the noise effects. By making the classification noise persist, we
again have a noise model which is nontrivial even if membership queries are
available, but also a model for which analysis is feasible.

Persistent noise is a good model of much empirical research in machine learn-
ing, where the goal is often to find a relatively simple approximator to some
unknown target function which is assumed to be much more complex than
any function in the class of approximators. All that is desired in this setting is
a reasonable approximator, not one that attempts to capture every nuance of
the target. In our Model III, the goal is similarly to find a good approximation
to the underlying noiseless function, rather than to the noisy function that we
can query directly. The noisy examples can be considered to be produced by
additional complexity in the target function that we choose to ignore for the
sake of producing a simple approximator. Viewed this way, the persistent noise
model could also be thought of as defining a type of agnostic learning [14],
which has the general goal of finding the best approximator within a class of
functions H to a target function which is not necessarily contained within H.

A subtle but important distinction between Models I and III is illustrated
by the following technical difficulty encountered in Model III but not in I.
Typically, in the PAC model we require that a learning algorithm succeed with
probability 1− δ for any δ > 0 (i.e., succeed with arbitrarily high confidence)
at producing a good approximator to the target. This is generally required of
the algorithm even if (non-persistent) classification noise is present. However,
it is unreasonable to allow δ to be arbitrarily near zero in the persistent noise
model, because in this model ξ(x) is a random [noise] function and not a
random variable. So, for example, if we are extremely unlucky in a given run of
the learning algorithm and ξ(x) = −1 for all x (which occurs with probability
η2n

> 0), then we will be trying to learn the target f from an oracle for f̄ , a
hopeless task given a class of approximators that is closed under complement.
In Model III there is nothing a learning algorithm can do to avoid such a
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situation, unlike Model I, where in the limit a large enough set of examples
will always “average out” the noise with arbitrarily high probability. Therefore,
unlike standard PAC learning, we must impose a positive lower bound on δ in
the persistent model, although this bound will be negligible.

Note that if a learning algorithm uses only first order SQs and the (first
order) sampling distribution P has the property that in any P-sample there
is a negligible chance of a repetition of some x, then an algorithm that learns
in model I will also learn in model III. An important case where this holds is
when P is (roughly) uniform over a domain of exponential size.

For second order SQs, model II will replace model I in the approximation
role. What differentiates models I and II in the second order setting is the
case of equality (“diagonal draw”) within a pair produced by a single draw
from Q. Our motivation for considering Model II is that, in our applications,
the distributions Q are sometimes such that the chance of a diagonal draw
occurring is non-negligible.

Model II is a useful intermediate between the other two models in the second
order setting. As in the independent noise model, we can reasonably require a
learning algorithm in this model to achieve arbitrarily high confidence, which
simplifies the analysis. And, analogously with the first order case above, if
the distributions Q used by a learning algorithm have the property that in
any polynomial-size sample there is negligible chance that any two distinct
pairs contain an identical member, then an algorithm that learns in the pair-
consistent noise model will clearly also learn in the persistent noise model. It
turns out that the two learning algorithms we consider in the Applications
section use distributions having this property. Thus we will obtain persistent
noise results for these algorithms by starting with a relatively clean analysis
in the pair-consistent model.

The noise-compensating functional we will produce for 2nd order SQs under
model II will assume different forms for x = y and for x 6= y.

Let us write the four equations expressing

EξF (x, y,±f(x)ξ(x),±f(y)ξ(y))

in terms of the four noise-free values of F . In the symmetric case where
F (·, ·, `, `′) = F (·, ·, `′, `) (which we assume below in view of the applications)
there are just three equations expressing the responses A,B,C to queries to a
noisy oracle in terms of the responses a, b, c to queries to a noiseless oracle. We
must also consider the fact that the pair-consistent noise function ξ behaves
differently in the case of a pair (x, y) with x = y and the case x 6= y. So we
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define

a = F (x, y, f(x), f(y))

b = F (x, y,−f(x), f(y))

c = F (x, y,−f(x),−f(y))

A = EξF (x, y, f(x)ξ(x), f(y)ξ(y))

B = EξF (x, y,−f(x)ξ(x), f(y)ξ(y))

C = EξF (x, y,−f(x)ξ(x),−f(y)ξ(y))

for an arbitrary pair (x, y), and

α = F (x, y, `, `′)

β = F (x, y,−`, `′)

γ = F (x, y,−`,−`′)

for fixed `, `′ ∈ {−1, +1}.

Now we consider the two cases x = y and x 6= y separately, as the noise
behaves differently in each case. In the first case, we obtain

(4.3)
A = (1 − η)a + ηc

C = ηa + (1 − η)c

and in the second

(4.4)

A = (1 − η)2a + 2η(1 − η)b + η2c

B = ((1 − η)2 + η2)b + η(1 − η)(a + c)

C = η2a + 2η(1 − η)b + (1 − η)2c.

(4.3) can be solved as in the previous section, and solving (4.4) gives the
value of the noiseless functional in terms of the expected values of the noisy
functionals at a given point (x, y) such that x 6= y:

a =
1

2(1 − 2η)

[
A − C +

[(1 − η)2 + η2](A + C) − 4η(1 − η)B

1 − 2η

]
.

Thus, analogously with the first-order analysis, we have that

F (x, y, f(x), f(y)) = Eξ(x),ξ(y)F
comp(x, y, f(x) · ξ(x), f(y) · ξ(y))
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where

F comp(x, y, `, `′) =





(1−η)α−ηγ

1−2η
if x = y

1
2(1−2η)

[
α − γ + [(1−η)2+η2](α+γ)−4η(1−η)β

1−2η

]
otherwise.

Theorem 4.1 The analogue of Theorem 3.1 holds for SQ families of the
second-order under the pair consistency noise model.

Indeed, once we computed the compensating functional for this case, the proof
of Theorem 3.1 carries over verbatim.

Summarizing, we have produced a second-order noise-compensating functional
that can be used to simulate a statistical query oracle given a pair-consistent
noise oracle. We have also noted that, for learning algorithms that adhere
to certain query distribution constraints, this simulation can (with very high
probability) be performed using a persistent noise oracle. In the remaining
section we shall discuss applications to specific learning algorithms.

5 Applications

In this section we apply our techniques to developing noise-tolerant versions
of two well-known membership query learning algorithms. The first of these is
an algorithm originally presented by Goldreich and Levin [9] which we call the
Weak Parity, or WP, algorithm (it has also been called the KM algorithm [2,21] by
researchers in learning theory because it was first applied to prove learnability
results by Kushilevitz and Mansour [18]). WP is essentially an agnostic learning
algorithm [14] that finds the parity functions that are best correlated (with
respect to the uniform distribution) with a given target function. The second
algorithm is the Harmonic Sieve (HS), an algorithm that efficiently learns
the class of DNF expressions with respect to the uniform distribution [11].
Our analysis corrects a deficiency in an earlier attempt at producing a noise-
tolerant version of HS [11,12].

As both algorithms utilize Fourier analysis, we briefly discuss the multi-dimensional
discrete Fourier transform before analyzing these learning algorithms.
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5.1 The Fourier transform

For each set A ⊆ {1, . . . , n} we define the function χA : {0, 1}n → {−1, +1}
as

χA(x) = (−1)
∑

i∈A
xi = 1 − 2

(∑

i∈A

xi mod 2

)

where xi represents the ith bit in the instance x. That is, χA(x) is the {−1, +1}-
valued function that is 1 when the parity of the bits in x indexed by A is even
and is −1 otherwise. Every function f : {0, 1}n → R can be uniquely ex-
pressed as a linear combination of parity functions: f =

∑
A f̂(A) · χA, where

f̂(A) = E[f(x) · χA(x)] and the expectation is uniform over the instances x.
We call the vector of coefficients f̂ the Fourier transform of f . Note that for
Boolean ({−1, +1}-valued) f , f̂(A) represents the correlation of f and χA

with respect to the uniform distribution.

It can be shown that for any f and g mapping {0, 1}n into the reals, E[fg] =∑
A f̂(A)ĝ(A). As a corollary of this we have Parseval’s identity: E[f 2] =∑
A f̂ 2(A). For Boolean f it follows that

∑
A f̂ 2(A) = 1. This implies that

for any Boolean f and any 0 < θ ≤ 1, |{A | f̂(A) ≥ θ}| ≤ θ−2. We call
Fourier coefficients of a function f exceeding a threshold θ the θ-heavy Fourier
coefficients of f .

5.2 A noise-tolerant WP

We now apply our noise-tolerance techniques to the Weak Parity algorithm.
We begin with a brief discussion of the original algorithm. It should be noted
that the algorithm is probabilistic—it uses sampling to obtain estimates of
various quantities—and therefore has non-zero probability of failure. However,
as with many learning algorithms, the running time of WP depends only inverse-
logarithmically on the desired failure probability, and therefore the failure
probability can effectively be made extremely small. Furthermore, we will
develop an SQ version of the algorithm that fails with probability zero, as the
SQ model specifies that with certainty we receive requested estimates from
the SQ oracle within a specified error tolerance. Therefore, for expositional
simplicity, we will ignore the possibility of failure of the WP algorithm in the
following discussion.

Given a membership oracle for an arbitrary Boolean function f and a threshold
θ > 0, WP will find a set S of Fourier coefficients including all of the θ-heavy
coefficients of f . Furthermore, all of the coefficients in S will be (θ/

√
2)-heavy.
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The algorithm runs in time polynomial in n and θ−1.

Conceptually, the algorithm is quite simple. It begins by partitioning the
Fourier coefficients of the target function into two subsets each of size 2n−1:
those coefficients f̂(A) such that 1 ∈ A and those such that 1 6∈ A. It then
estimates (as described below) the sum of squares of the coefficients in each
subset. If either or both of these subsets has sum of squares greater than θ2,
the algorithm recurses on the subset(s) by partitioning each into two subsets
according to whether or not 2 ∈ A and estimating the sum of squares of the
coefficients in each resulting subset of size 2n−2. This continues for n levels; at
level n, we are testing the sum of squares of subsets of size 1 (i.e., individual
coefficients) against the threshold squared. Those coefficients that survive this
test are the desired θ-heavy coefficients.

Because the magnitude of a Fourier coefficient of f represents the (possibly
negative) correlation of the corresponding parity function with f , any parity
function corresponding to a θ-heavy coefficient for θ inverse-polynomially large
in n is a weak approximator for f with respect to uniform. Thus WP can
be used as the basis of a uniform-distribution weak learning algorithm for
the class PL∞ [4] of functions which have at least one Fourier coefficient
of magnitude inverse-polynomially large in n. Specifically, if we run WP with
an appropriate inverse-polynomial threshold then it will be guaranteed to
return a non-empty set of coefficients for which all of the corresponding parity
functions (or their negations, for those with negative coefficients) are weak
approximators to f . Therefore, we may choose any of these parity functions
as the weak hypothesis returned by the learning algorithm, and hence the
name Weak Parity algorithm.

Actually, because our estimates of the sums of squares of various subsets are
in general not perfect, we estimate to within a tolerance of θ2/4 and recurse
on a subset if our estimate is at least 3θ2/4. This guarantees that the set S of
coefficients returned by WP has the heaviness properties claimed above. Also
note that by Parseval’s there will be at most 2/θ2 subsets recursed on at each
of the n levels of the recursion. Therefore, as long as the estimates of the sums
of squares can all be performed efficiently, the algorithm runs in polynomial
time.

The key to the WP algorithm, then, is showing how to estimate the sums of
squares of certain subsets of Fourier coefficients efficiently. The subsets of
interest are of the form {f̂(A) | A ∩ [k] = B}, where [k] = {1, . . . , k} and
B ⊆ [k]. Let CB represent such a subset, and let Dk be the distribution on X2

that places zero weight on all pairs (x, y) such that the last n−k bits of x and
y are not equal and is uniform over all other pairs. Then Goldreich and Levin
[9] showed that the sum of squares of coefficients in any such CB is given by

E[f(x)f(y)χB(x ⊕ y)]
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where the expectation is taken over (x, y) drawn according to Dk. In typical
learning-theoretic applications of this algorithm, it is assumed that a mem-
bership oracle for f is available and these expectations are estimated using
calls to this oracle.

Taking Q(x, y, f(x), f(y)) = f(x)f(y)χB(x⊕y) shows that WP can be converted
to a weak second-order SQ learning algorithm for PL∞ [21]. We next wish to
show that this algorithm can be simulated by a pair-consistent algorithm. To
facilitate this, we will limit the class of functions to be learned so that we have
a class with polynomial VC dimension. Specifically, we will assume that f is
a polynomial-size DNF, i.e., a Boolean function expressible as a DNF with
at most polynomial in n terms. Every such function is contained in the class
P̂ T 1 of functions expressible as the majority vote of polynomially many parity
functions [11]. And there are only 2poly(n) many such functions [3]. Thus the
VC dimension of this class is polynomial in n.

Furthermore, since there are only 2n parity functions χB and n different dis-
tributions Dk, the pseudo-dimension of the families of queries is polynomial in
n (for fixed tolerance τ). Therefore, given a pair-consistent oracle of a known
noise rate η we can simulate the SQ algorithm from a polynomial-size sample
using our second-order compensating functional.

Finally, note that if we draw a pair (x, y) according to Dk then the probability
of seeing either x or y in a subsequent pair is exponentially small in n for all
Dk. This follows because Dk can be sampled by the following process:

• Draw n − k bits c, k bits a, and k bits b uniformly at random
• Construct x by concatenating a and c, y by concatenating b and c.

Since either k or n − k is at least n/2, the probability that a subsequent x′

or y′ will match either x or y is negligible. Thus, for this algorithm’s choice
of (membership) query distributions Dk, there is negligible probability that
a polynomial-size sample sequence drawn from a persistent noisy oracle will
differ noticeably from a sample returned by a pair-consistent noisy oracle.
Therefore, the above pair-consistent algorithm for weakly learning DNF also
tolerates persistent classification noise.

5.3 A noise-tolerant HS

In this section we extend the Harmonic Sieve algorithm—which learns DNF
with respect to the uniform distribution using noiseless membership queries—
so that it tolerates persistent classification noise in the membership queries.
As above, we begin with a brief outline of the original algorithm, and again
we ignore the possibility of failure to simplify the explanation. We then ex-
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tend the algorithm in several steps. First, we rewrite the algorithm so that
it uses second-order statistical queries rather than membership queries. Next,
we show that the SQ algorithm can be simulated by a pair-consistent algo-
rithm operating on a polynomial-size sample. Finally, we argue that for this
algorithm samples drawn from pair-consistent and persistent noisy oracles are,
with extremely high probability, indistinguishable, giving the desired result.

5.3.1 The Harmonic Sieve

The Harmonic Sieve consists of two primary components: a boost-by-filtering
algorithm of Freund [6,7] and an extension of the WP algorithm. We consider
the latter algorithm first.

The Harmonic Sieve needs a generalized version of WP which finds the heavy
Fourier coefficients of certain non-Boolean functions. Specifically, given a func-
tion g : {0, 1}n → R and a threshold θ, we want an algorithm WP′ that effi-
ciently finds all of the Fourier coefficients ĝ(A) of magnitude at least θ/

√
2. It

has been shown [11] that the WP algorithm can in fact be applied with almost
no modification to perform this task.

Specifically, we can use exactly the same recursive splitting algorithm to isolate
the large Fourier coefficients, and the test for each split can be computed by
estimating the same expectation (with g replacing f) as before. There are only
two differences. First, because the function g may have greater variance than
the Boolean function f , we may need to draw a larger sample to estimate the
expectation. Second, because our bound on the number of subsets of Fourier
coefficients split at each level of the WP recursion was based in part on the
expected value of the square of the target function, there may be more subsets
at each level when a real-valued function g is the target rather than a Boolean
f . However, for the g’s produced by the Harmonic Sieve while learning a
DNF expression of size polynomial in n, the magnitude of g will be inverse
polynomial in the accuracy ε required of the learning algorithm. This in turn
implies a polynomial bound on both the variance of g and on the number of
subsets at each level of the WP recursion.

The other component of the Harmonic Sieve is a modification of a hypothesis-
boosting algorithm due to Freund. We give only the basic ideas here; the reader
interested in a detailed discussion is referred to [12]. Given a weak learning
algorithm for a function class and the task of producing a strong hypothesis
with respect to uniform, the hypothesis booster first uses the weak learner
to produce a weak hypothesis with respect to uniform. It then determines a
number k of stages that will be performed (how this is determined is discussed
below). For each stage 0 < i < k it defines a new distribution and invokes
the weak learner against the distribution to find a weak hypothesis wi (w0 is
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the initial weak hypothesis learned with respect to uniform). The final strong
hypothesis is a majority vote over all of the weak hypotheses produced. The
distribution defined at stage i of this process is given by

Di(x) =
1
2n αi(k, x, f(x), w0(x), w1(x), . . . , wi−1(x))

Ey[αi(k, y, f(y), w0(y), . . .)]

where αi is an explicit, efficiently computable function of its parameters, 0 ≤
αi ≤ 1 for all possible i and all valid parameters, and the expectation is over
uniform y.

The Harmonic Sieve modifies this booster in the following way. At each stage
i > 0 the algorithm simulates an oracle D′

i(x) that given any x returns an
estimate of the weight assigned to x by the distribution Di. Specifically, the
algorithm estimates Ey[αi(k, y, f(y), w0(y), . . .)] by sampling; call this estimate
Eαi

. Then D′

i is defined as:

D′

i(x) =
1
2n αi(k, x, f(x), w0(x), w1(x), . . . , wi−1(x))

Eαi

.

Note that an oracle for D′

i can be simulated given a membership oracle for f .
The Harmonic Sieve requires that the estimate Eαi

be made with tolerance
inverse polynomial in ε, the specified accuracy required of the algorithm’s
hypothesis, and a “cut-off” condition of the booster guarantees that the mag-
nitude of Eαi

is at least inverse polynomial in ε.

The weak learner boosted by the Harmonic Sieve is, as might be expected,
WP′. At each stage i, HS simulates a membership oracle for the function

g′

i(x) = 2nf(x)D′

i(x)

=
f(x)αi(k, x, f(x), w0(x), w1(x), . . . , wi−1(x))

Eαi

.

It can be shown that the inverse-polynomially heavy Fourier coefficients of g ′

i

correspond exactly to the parity functions that are inverse-polynomially well
correlated with f with respect to Di. Furthermore, it can be shown that any
Boolean function expressible as a DNF with polynomially many in n terms
has a non-empty set of inverse-polynomially well correlated parity functions
[11]. Finally, note that g′

i is polynomially bounded in ε as required by WP′ due
to the cut-off condition of the booster. Therefore, WP′ is an appropriate weak
learner for the Harmonic Sieve to boost.

The number of boosting stages k required to achieve a final hypothesis h
such that Pr(f 6= h) ≤ ε is inverse polynomial in the number of terms in
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the smallest DNF representation of f and depends logarithmically on ε−1.
Specifically, letting s represent the number of terms in f , k = O(s2 log ε−1).
Thus, if we assume that the target class is the set of all DNF expressions with
at most a fixed polynomial in n number of terms, then k can be computed
directly.

Jackson [11,12] extended the basic Harmonic Sieve in a number of ways,
showing among other things that DNF can be learned with respect to cer-
tain nonuniform distribution classes and that some geometric concepts can be
learned by a generalization of the Sieve. He also considered noise tolerance
and showed that, with respect to the uniform distribution, the original WP
algorithm weakly learns DNF despite persistent classification noise. In fact,
WP will return essentially the same parity function as the weak approximator
whether or not noise is present; noise simply causes the algorithm to require
more time (the increase is inverse polynomial in the noise rate’s difference
from 1

2
). This means that the first boosting stage of the Harmonic Sieve will

produce the same weak approximator whether or not the target membership
oracle is noisy. At first glance, this fact might seem to imply that the distribu-
tion generated by HS at its second boosting stage would be the same whether
or not the target was noisy. Jackson showed that if this was the case at the
second stage, then the generalized WP used as the weak learner by HS would
again return the same hypothesis whether or not the target was noisy, and
in fact this would continue for subsequent stages as well. However, the dis-
tribution at the second stage (and succeeding stages) is dependent not only
on the weak hypothesis produced but also on the target, and specifically on
any noise present in the target. Jackson overlooked this fact and mistakenly
claimed that his results concerning noise tolerance of the generalized WP im-
plied that an unmodified HS would also strongly learn DNF despite persistent
classification noise.

5.3.2 Generalizing HS

While we do not directly address the question of noise tolerance of the original
HS algorithm, we will present a generalized Harmonic Sieve that, by using a
compensating functional, learns DNF with respect to uniform despite persis-
tent classification noise. First, we show how to learn DNF using second-order
statistical queries, and then we will build on this to obtain the persistent noise
result.

Notice that in the original Harmonic Sieve, membership queries are used at
each boosting stage i in two ways: to compute Eαi

, and within WP′ to find
the heavy Fourier coefficients of g′

i. Eαi
can obviously be computed using

statistical queries rather than membership queries (use Qαi
(x, y, f(x), f(y)) =

αi(k, y, f(y), w0(y), . . .)). Recalling our earlier discussion about WP′, it is also
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clear that if we had a second-order statistical query oracle for g ′

i then we could
find this function’s heavy Fourier coefficients. As with WP, the queries we would
use would be of the form Q(x1, x2, g

′

i(x1), g
′

i(x2)) = g′

i(x1)g
′

i(x2)χB(x1 ⊕ x2).
But note that given x1, x2, f(x1), and f(x2), we can efficiently compute g′

i(x1)
and g′

i(x2). Therefore, we can use a query

Q′(x1, x2, f(x1), f(x2)) =
f(x)αi(k, x, f(x), w0(x), . . .)f(y)αi(k, y, f(y), w0(y), . . .)

E2
αi

to a second-order oracle for f to simulate the associated query to the oracle for
g′

i. This completes the proof that DNF can be learned with respect to uniform
from a second-order statistical query oracle.

There is a somewhat subtle point here that is worth noting. We are making
use of the fact that the query given to the statistical query oracle has (con-
ceptually) access to the true target function; it is only the resulting expected
value of the query that is corrupted by noise. This means that the computa-
tions of αi() needed to compute g′

i(x) can be thought of as being performed
using the noiseless function f . This is critical to the proper computation of the
distribution D′

i and thus to the overall operation of the learning algorithm.
It is precisely on this point that Jackson’s earlier attempt to obtain a noise-
tolerant DNF algorithm [11] broke down, as his analysis neglected the fact
that the computation of a “true” αi depends on access to a noiseless f .

We next wish to show that we can still learn DNF given access to a pair-
consistent noisy oracle rather than a second-order SQ oracle. Now, of course,
we no longer have a “true” function f available to us. Nevertheless, the noise-
compensating functional of Theorem 4.1 allows us to accurately simulate
queries to the SQ oracle. And this simulation can be performed efficiently
given a polynomial bound on the pseudo-dimension of the query class, which
we consider next.

When learning DNF expressions bounded by a size s polynomial in n, a crude
bound on the total number of queries of this form that the algorithm might
use is 22ni|Φ|22k, where |Φ| = 3ns is the size of the space of target func-
tions, because the target and i parity functions (weak hypotheses) of earlier
stages of the boosting process determine (efficiently) the g ′

i. Now i runs up to
O(s2 log ε−1). Thus the logarithm of the number of possible queries at level k
of the WP′ recursion is polynomial in n, s, and log ε−1, and so is the sample size
needed for uniform approximation of all of the expectations involved in the
SQs, using also the facts that the number of SQ-families is just n, the number
of levels of the recursive splitting process in WP′, and the range [−M,M ] of
the functionals, like the bound for g ′

i, has inversely polynomial growth in ε.

Finally, recall that the WP′ algorithm boosted by HS is essentially the WP al-
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gorithm discussed in Section 5.2. In particular, WP′ makes random draws ac-
cording to the same distributions Dk that are used by WP. Thus, the analy-
sis of WP in that section also gives that for WP′ there is negligible probabil-
ity that pair-consistent and persistent noisy oracles will produce noticeably
different samples. Therefore, HS—with WP′ modified to use our second-order
noise-compensating functional—learns DNF with respect to uniform from a
persistent noisy oracle.

5.4 An alternate analysis

Actually, it turns out that for these particular applications we do not need the
full generality of our approach to producing noise-tolerant algorithms. In par-
ticular, using the x 6= y (off-diagonal) second-order compensating functional
suffices to learn DNF in a noise-tolerant fashion with respect to uniform. Since
all that changes is the compensating functional we use, once we have shown
that the new functional suffices for pair-consistent noise-tolerant learning, per-
sistent noise tolerance follows immediately from our earlier argument. Thus
we focus here on briefly outlining a proof that the x 6= y functional suffices
for simulating second-order SQs. The idea is that, while a x 6= y functional
will not in general simulate SQs as well as the original functional, the errors
introduced do not cause deviation in the algorithm’s final output (with high
probability).

The reason we included the x = y part in the original second-order func-
tional is because in the independent noise model we can have a pair x, y
with x = y and f(x) 6= f(y), but this cannot occur in the pair-consistent
model. The purpose, then, is to allow us to obtain an estimate in the pair-
consistent model of a result we would obtain in the independent noise model.
Now in the WP algorithm we are interested in estimating quantities of the form
E[f(x)f(y)χB(x⊕y)]. First, note that this is always a non-negative value, since
it represents a sum of squares. Also observe that if x = y and f(x) 6= f(y)
then f(x)f(y)χB(x ⊕ y) = −1. On the other hand, if x = y and f(x) = f(y)
then f(x)f(y)χB(x⊕y) = +1. Thus the primary effect of using only the x 6= y
part in the compensating functional in the pair-consistent noise model is that
the expectations will be overestimated (more positive) relative to the values
obtained in the independent model.

Now recall that in WP, Pr(x = y) = 2−i, where i represents the level of the re-
cursion. Thus, if WP is given an inverse-polynomially in n large threshold, then
the only levels at which Pr(x = y) is non-negligible are the top O(log n) levels.
But at these levels, the only effect of an overestimate of E[f(x)f(y)χB(x⊕ y)]
is to potentially cause WP to recurse on some subsets on which it would not
otherwise recurse. However, at lower levels of the recursion, where the effect
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of the overestimation will be minimal, all descendants of such subsets will be
eliminated because it will be discovered that they fall below threshold. Thus
the only impact of these overestimates is that the algorithm might do some-
what more work than it would if a better estimate was available. However,
the algorithm still runs efficiently since the extraneous subsets only appear
in the top O(log n) levels. A similar argument applies to WP′. Thus the some-
what simpler off-diagonal compensating functional is sufficient for the WP and
Harmonic Sieve applications.
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