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Abstract

We study the problem of PAC-learning Boolean functions with random attribute noise under
the uniform distribution. We define a noisy distance measure for function classes and show that
if this measure is small for a class C and an attribute noise distribution D then C is not learnable
with respect to the uniform distribution in the presence of noise generated according to D. The
noisy distance measure is then characterized in terms of Fourier properties of the function class.
We use this characterization to show that the class of all parity functions is not learnable for any
but very concentrated noise distributions D. On the other hand, we show that if C is learnable
with respect to uniform using a standard Fourier-based learning technique, then C is learnable
with time and sample complexity also determined by the noisy distance. In fact, we show that
this style algorithm is the best possible for learning in the presence of attribute noise.

1 Introduction

The problem of attribute noise in PAC-learning was studied originally by Shackelford and Volper
[10] for the case of k-DNF expressions. Their uniform attribute noise model consists of a Bernoulli
process that will either flip or not flip each attribute value with a fixed probability p ∈ [0, 1] that
is the same for every attribute. While Shackelford and Volper assumed that the learner knows the
noise rate p, Goldman and Sloan [6] proved that this assumption is not necessary in order to learn
monomials.

In addition to uniform attribute noise, Goldman and Sloan also considered a product noise
model in which there are n noise rates pi, one for each distinct attribute xi, i ∈ [n]. They showed
that if the product noise rates pi are unknown, then no PAC-learning algorithm exists that can
tolerate a noise rate higher than 2ε, where ε is the required-accuracy parameter for PAC learning.
Their proof uses the method of induced distribution of Kearns and Li [8]. Subsequently, Decatur
and Gennaro [3] proved that if the different noise rates are known (or if some upper bound on them
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is given) then there exist efficient PAC-learning algorithms for simple classes such as monomials
and k-DNF.

In this paper we consider a very general attribute noise model, but limit the distribution that
will be used to generate examples and to evaluate the accuracy of the hypothesis generated by
the learning algorithm. Specifically, we focus on the problem of PAC learning with respect to the
uniform distribution over examples, with little or no constraint on the distribution used to generate
attribute noise in the examples. We give both lower and upper bounds.

First, we define a measure of noisy distance for concept classes and show that the sample size
required for PAC learning a class over the uniform distribution is inversely proportional to the
noisy distance of the class. We also give a characterization of the noisy distance in terms of Fourier
properties of the class. As an example of how this characterization can be used, we show that
the class of all parity functions is not (even information theoretically) PAC learnable with respect
to uniform unless the attribute noise distribution puts nonnegligible weight on one or more noise
vectors. This holds even if the noise process is known. On the other hand, we observe as a corollary
of a result of Blum, Burch, and Langford [1] that the class of monotone Boolean functions is weakly
PAC-learnable even if the noise process if unknown.

We then turn to developing positive learnability results. Specifically, we show that any concept
class that is PAC-learnable with respect to the uniform distribution using an algorithm in the style
of Linial, Mansour, and Nisan [9] can be adapted to handle attribute noise, assuming the probability
distribution of the noise process is known. However, the noisy distance of a class depends on the
noise distribution, so the sample complexity of our algorithm is dependent on the noise process
as well as the usual PAC factors. The dependence of the the sample complexity of our algorithm
matches, to within polynomial factors, our lower bound for learning with attribute noise. We also
give a simple argument showing that if the noise process is unknown then even extremely simple
concept classes are not (strongly) learnable.

Our Fourier techniques share some commonalities with methods developed by Benjamini, Kalai,
and Schramm [2] in their work that studied percolation and its relation to noise sensitivity of
Boolean functions. Their techniques, like ours, were strongly motivated by the influential work of
Kahn, Kalai, and Linial [7] on Fourier analysis of Boolean functions.

2 Definitions and Notation

The problem considered in this paper is PAC learning Boolean functions under some fixed distribu-
tion over instances when attribute noise is also applied to the instances. To a lesser extent, we also
consider classification noise. We now define these concepts more precisely below. For simplicity,
our definition suppresses some details of standard definitions (particularly the notion of size of
functions) that are not critical to the results in this paper.

For a natural number n, we consider classes of Boolean functions f : {0, 1}n → {−1, +1} and
distributions over {0, 1}n. The uniform distribution on {0, 1}n is denoted U , i.e., U(x) = 2−n, for
all x ∈ {0, 1}n. The bitwise exclusive-or of two n-bit vectors a, b ∈ {0, 1}n is denoted a ⊕ b. The
unit vector ei ∈ {0, 1}n has its i-th bit set to one and all other bits set to zero. For a ∈ {0, 1}n,
the parity function χa is defined as χa(x) = (−1)

∑n
i=1 aixi . It is known that any Boolean function

f : {0, 1}n → {−1, +1} can be represented as a weighted sum of parity functions (see [9])

f(x) =
∑

a∈{0, 1}n

f̂(a)χa(x)
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where f̂(a) = EU [f(x)χa(x)] is the Fourier coefficient of f at a. This is called the Fourier repre-
sentation of f and is a direct consequence of the fact that {χa | a ∈ {0, 1}n} forms an orthonormal
basis for all Boolean (or even real-valued) functions over {0, 1}n, i.e., EU [χa(x)χb(x)] is one if a = b
and zero otherwise.

The focus of the paper is on a learning model in which the instance distribution is uniform and
the noise process is characterized by a pair of parameters (D, R). The noise process can be viewed
as drawing a random vector a from the distribution D (representing the attribute noise process)
and a random value b from the distribution R (representing classification noise), then returning the
exclusive OR of a with the original example vector x and the exclusive OR of the label f(x) with b.
So the noise process changes an example (x, f(x)) to an example (x⊕a, f(x)⊕b) (actually, because
we consider functions mapping to {−1, +1}, we will assume that R produces values in {−1, +1}
and replace the latter ⊕ with multiplication). We will call this (D, R)-noise and denote the oracle
that returns a (D, R)-noisy example for f with respect to the uniform distribution by EXD,R(f, U).

Definition 1 Let C be a concept class containing functions f : {0, 1}n → {−1, +1}. Then C is
PAC learnable under the uniform distribution with (D, R)-noise if there is an algorithm A such
that for any ε, δ ∈ (0, 1) and for any target f ∈ C, given the inputs ε, δ and access to a noisy
example oracle EXD,R(f, U), the algorithm A outputs a hypothesis h such that PrU [h 6= f ] < ε
with probability at least 1 − δ. The algorithm must make a number of oracle calls (have sample
complexity) at most polynomial in n, 1/ε, and 1/δ. The time complexity of A is the number of
computation steps taken by A. A PAC algorithm is efficient if its time complexity is also polynomial
in n, 1/ε, and 1/δ.

If the classification noise process R always returns 0, then (D, R)-noise is simply attribute noise
and we refer to it as D-noise. Our lower bounds focus on this type of noise.

3 Model Transformation

Before developing our main results, it is useful to relate the (D, R)-noise model to another model
where the example (x, f(x)) is changed to (x, f(x⊕ a)b) for a random vector a drawn according to
distribution D and b ∈ {−1, +1} drawn according to distribution R.

Lemma 1 Let U = Un be the uniform distribution over n-bit vectors and (D, R) = (Dn, Rn) be
any distribution over {0, 1}n and {−1, +1}, respectively. Let f : {0, 1}n → {0, 1} be any Boolean
function. If X ∈U {0, 1}n, A ∈D {0, 1}n and B ∈R {−1, +1} are random variables then the random
variables (X ⊕ A, f(X)B) and (X, f(X ⊕ A)B) have identical distributions.

Proof Consider the random variables X1 = (X, A, B) and X2 = (X⊕A, A, B). Since X is uniformly
distributed, X1 and X2 are identically distributed. Define ϕ(x, y, z) = (x, f(x ⊕ y)z). Then

(X ⊕ A, f(X)B) = ϕ(X2) = ϕ(X1) = (X, f(X ⊕ A)B),

completing the claim.
This lemma is key to our subsequent results, as it allows us to consider the easier noise model

of (X, f(X ⊕ A)B) instead of the random attribute noise model when learning is with respect to
the uniform distribution.
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4 Sample Complexity Lower Bound

In this section we give a lower bound for PAC-learning with D-noise. Because D-noise is a special
case of (D, R)-noise, our lower bounds immediately generalize to this model as well.

We start with some intuition for the lower bound. Let C be the class being learned. Let f and g
be two functions in the class C and suppose PrU [f 6= g] > ε. If for a fixed x and distribution D the
expectation Ea∼D[f(x ⊕ a)] is very close to Ea∼D[g(x ⊕ a)], then we cannot notice the difference
between (x, f(x ⊕ a1)) and (x, g(x ⊕ a2)). Now since the example oracle we consider chooses x
according to the uniform distribution, we will look at Ex[|Ea[f(x ⊕ a) − g(x ⊕ a)]|]. This, we will
show, is a good measure for learnability with noise. We now formalize the above.

Definition 2 Let C be a concept class over {0, 1}n and let f, g ∈ C. Let D be any distribution
over {0, 1}n. Then the noisy distance between f and g under the distribution D is defined as

∆D(f, g) ≡
1

2
Ex[|Ea[f(x ⊕ a) − g(x ⊕ a)]|],

where the expectation of x is taken over the uniform distribution over {0, 1}n and the expectation
of a is taken with respect to D. For a concept class C let

∆ε
D(C) ≡ min{∆D(f, g) | f, g ∈ C with Pr

U
[f 6= g] > ε}.

The following theorem states an information-theoretic lower bound on the number of samples
required by any PAC learning algorithm.

Theorem 2 Let C be a concept class and, for fixed ε and D, represent ∆ε
D(C) by ∆. Then any

PAC learning algorithm for C under a D-distribution noise that, with probability at least 1 − δ,
outputs an ε-good hypothesis requires a sample complexity of Ω

(

1−δ
∆

)

.

Proof Consider an algorithm that tries to distinguish whether a sample S = {〈~xi, bi〉 | i ∈ [m]} is
labeled by the function f or g, where f, g ∈ C. The claim is that no algorithm has a distinguishing
probability greater than m∆.

Formally, let F and G be distributions over {0, 1}n × {−1, +1} that produce 〈x, f(x ⊕ a)〉
and 〈x, g(x ⊕ a)〉, respectively, where x is drawn according to the uniform distribution and a is
drawn according to the noise distribution D. Also let F m and Gm be induced distributions on m
independent samples drawn according to F and G, respectively. We must show that there exists
no prediction algorithm A (that outputs {0, 1}) with the property that for all f, g ∈ C,

∣

∣

∣

∣

Pr
S∼F m

[A(S) = 1] − Pr
S∼Gm

[A(S) = 1]

∣

∣

∣

∣

> m∆.

Denote the above absolute difference of probabilities by δA(f, g).
Assume on the contrary that there exists an algorithm A such that δA(f, g) > m∆. We will

use the hybrid method or probability walk argument [5] to show that there is an algorithm B that
can predict whether a labeled example 〈x, b〉 is drawn from F or from G with an advantage of ∆/2
over random guessing, i.e., the algorithm B satisfies

Pr[B(x, b) predicts correctly] >
1

2
+

∆

2
.
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This is a contradiction by observing that the optimal Bayes predictor has a ∆/2 advantage (see the
appendix for details or [4]). Hence any algorithm needs m = Ω((1 − δ)/∆) samples to distinguish
any pair of ε-apart functions with probability at least 1 − δ.

We now elaborate on the hybrid method. Define a sequence of distributions H0, H1, . . . , Hn−1

over ({0, 1}n × {−1, +1})m where

Hi = (〈x1, f(x1 ⊕ a)〉, . . . , 〈xi, f(xi ⊕ a)〉, 〈xi+1, g(xi+1 ⊕ a)〉, . . . , 〈xm, g(xm ⊕ a)〉).

Note that H0 = Gm and Hm = Fm. Now let p(Hi) = PrS∼Hi
[A(S) = 1]. Then

δA(f, g) = |p(H0) − p(Hm)| =

∣

∣

∣

∣

∣

m−1
∑

i=0

(p(Hi) − p(Hi+1))

∣

∣

∣

∣

∣

≤
m−1
∑

i=0

|p(Hi) − p(Hi+1)|

So if δA(f, g) > m∆ then there exists i0 ∈ {0, 1, . . . , m − 1} such that

|p(Hi0) − p(Hi0+1)| > ∆.

Consider the following algorithm B: on input 〈x, b〉, run algorithm A on the input

Z = (〈y1, f(y1 ⊕ a)〉, . . . , 〈yi0 , f(yi0 ⊕ a)〉, 〈x, b〉, 〈yi0+2, g(yi0+2 ⊕ a)〉, . . . , 〈ym, g(ym ⊕ a)〉),

where y1, . . . , yi0 , yi0+1, . . . , ym are randomly drawn according to the uniform distribution. Assume
without loss of generality that p(Hi0) < p(Hi0+1). So A is more likely to output 1 when the
component (i0 + 1) of its input is labeled by f than when it is labeled by g. Then B’s prediction
is given by

B(〈x, b〉) =

{

f if A(Z) = 1
g otherwise

Let EB be the event that B makes a wrong prediction. The probability of event EB is given by
(assuming a uniform prior on f and g, i.e., chosen uniformly)

Pr[EB] = (Pr[EB | 〈x, b〉 ∼ F ] + Pr[EB | 〈x, b〉 ∼ G]) ×
1

2

=
1

2
× [(1 − p(Hi0+1)) + p(Hi0)]

=
1

2
−

1

2
[p(Hi0+1) − p(Hi0)].

So algorithm B has an advantage strictly greater than ∆/2 in prediction.

4.1 Near Tight Characterization

In the following we will use Fourier analysis to obtain a nearly tight characterization of the noisy
distance quantity ∆D(f, g).

Definition 3 Let f : {0, 1}n → {−1, +1} be a Boolean function. Define the transformation Tα,

α ∈ [0, 1]{0, 1}n
on Boolean functions so that Tα(f) =

∑

c∈{0,1}n αcf̂(c)χc. Then the α-attenuated
power spectrum of f is

sα(f) = ||Tα(f)||22 =
∑

c

α2
c f̂(c)2.
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As it turns out, ∆D(f, g) is characterized by the α-attenuated power spectrum of f − g with
αc = Ea∼D[χc(a)]. In particular, define sD(f) to be sα(f) with αc defined in this way. Then we
have:

Theorem 3 Let f, g : {0, 1}n → {−1, +1} be Boolean functions and D any probability distribution
over {0, 1}n. Then

sD(f − g) ≤ ∆D(f, g) ≤
√

sD(f − g). (1)

Proof Using the fact that E[|X|] ≤
√

E[X2], we get

∆D(f, g) ≤
1

2

√

Ex∼Un [(Ea∼D[f(x ⊕ a) − g(x ⊕ a)])2].

Let h(x) = (f(x) − g(x))/2. Then right hand side of the previous expression becomes

√

Ex[E2
a[h(x ⊕ a)]].

We now work with the inner expression Ex[E2
a[h(x ⊕ a)]].

Ex[E2
a[h(x ⊕ a)] = Ex[Ea[h(x ⊕ a)]Eb[h(x ⊕ b)]

= Ea,b[Ex[
∑

s,t

ĥ(s)ĥ(t)χs(x ⊕ a)χt(x ⊕ b)]]

= Ea,b[
∑

s,t

ĥ(s)ĥ(t)χs(a)χt(b)Ex[χs(x)χt(x)]

=
∑

s

ĥ(s)2E2
a[χs(a)]

= sD(h).

Hence we get
∆D(f, g) ≤

√

sD(f − g).

Next, we show a lower bound on ∆D(f, g). We note that 0 ≤ |Ea[h(x ⊕ a)]| ≤ 1, since
h ∈ {−1, 0, +1}. Thus

Ex[|Ea[h(x ⊕ a)]|] ≥ Ex[E2
a[h(x ⊕ a)]] = sD(h)

using the same analysis as in the upper bound. This completes the theorem.
Define

Sε
D(C) = min{sD(f − g) | f, g ∈ C with Pr

U
[f 6= g] > ε}.

Using this definition with Theorem 3 we have the following inequalities.

Theorem 4 For any class C and any ε we have

Sε
D(C) ≤ ∆ε

D(C) ≤
√

Sε
D(C).

Then by Theorem 3 we have the following lower bound.

Theorem 5 Let C be a concept class with Sε
D(C) ≤ S. Then any PAC learning algorithm for C

under D-distribution attribute noise that outputs an ε-good hypothesis with probability at least 1− δ

requires a sample complexity of Ω
(

1−δ√
S

)

.
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We now show that the class of parity functions is not PAC learnable under the uniform distri-
bution with D-noise for almost every noise distribution D.

Theorem 6 Let D be a distribution such that maxx D(x) is superpolynomially small (or 1/ω(poly(n))).
Then the set of parity functions is not PAC-learnable under D-distribution noise.

Proof Notice that for any two distinct parity functions f and g we have Pr[f 6= g] = 1/2. Since f
and g are parity functions, sD(f − g) = sD(f) + sD(g), and it is enough to find two distinct parity
functions f and g with superpolynomially small sD(f) and sD(g).

Consider Ec[sD(χc)] where c is over the uniform distribution. We have

Ec[sD(χc)] = Ec[α
2
c ]

= Ec[Ea∼D[χc(a)]Eb∼D[χc(b)]]

= EcEa,b[χc(a ⊕ b)]

= Ea,bEc[χa⊕b(c)]

= Ea,bI[a = b]

≤ max
x

D(x).

where I[a = b] = 1 if a = b and 0 otherwise. Therefore, because sD(f) is nonnegative for all
D and Boolean f , only a superpolynomially small fraction of parity functions χc can be inverse
polynomially large if D(x) is superpolynomially small for all x. So there are at least two parity
functions f and g for which both sD(f) and sD(g) are superpolynomially small.

Finally, it should be noted that Theorem 5 is only a hardness result for strong PAC learnability.
As an example of a class that can be weakly learned in spite of arbitrary and unknown random
attribute noise, consider monotone Boolean functions. Blum, Burch, and Langford [1] have shown
that every monotone Boolean function is weakly approximated with respect to the uniform dis-
tribution by either one of the two constant functions or by the majority function. Since random
attribute noise alone does not change the label of a function, it is easy to test noisy examples to see
if one of the constants functions is a weak approximator to a montone function f ; if not, majority
is.

5 Upper Bounds

In this section we consider a certain type of Fourier-based learning algorithm which we will call
LMN-style. The LMN-style algorithm was introduced by Linial, Mansour, and Nisan [9], who
showed that the class AC0 of polynomial-size, constant depth circuits is PAC learnable with respect
to the uniform distribution in quasipolynomial (roughly npolylog(n)) time. The key to their result
was analyzing the Fourier properties of AC0 to show that for every AC0 function f , the sum of the
squares of the Fourier coefficients of degree polylog(n) or less is nearly 1. They then showed that
the function

h(x) = sign





∑

|a|≤polylog(n)

f̂(a)χa(x)





is a good approximator to the target function f . Finally, it follows from standard Chernoff bounds
that all of these Fourier coefficients can be closely approximated by sampling from a uniform-
distribution example oracle, with sample size and running time dominated by npolylog(n).
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An LMN-style algorithm, then, given ε > 0, consists of estimating —for every n-bit index in a
set Tε—Fourier coefficients, with the guarantee that the sum of the squares of these coefficients is
nearly 1. How near 1 this sum must be, and therefore how large the set Tε must be, depends on the
value of the PAC accuracy parameter ε, which is why ε subscripts T . For example, in the case of
Linial et al.’s algorithm for AC0, the Hamming weight of the Fourier indices grows as ε approaches
0. The hypothesis resulting from an LMN-style algorithm will be of the form

h(x) = sign

(

∑

a∈Tε

f̃(a)χa(x)

)

,

where f̃(a) represents an estimate of the Fourier coefficient f̂(a).
In this section we show that if there is an LMN-style algorithm for learning a class of functions

C, then C is PAC-learnable under any (D, R)-noise in time polynomial in |T |, 1/(1 − 2η), and
1/∆, where η is the expectation of the noise rate in the label. Since 1/∆ is a lower bound for
PAC-learning with D-distribution noise and 1/(1 − 2η) is a lower bound for learning with label
noise [11], our result is tight (up to polynomial factors). Before we formally state the result, we
recall the following version of Chernoff bounds.

Lemma 7 (Chernoff bounds) Let Xi, 1 ≤ i ≤ m, be independent, identically distributed random
variables, where E[Xi] = µ and |Xi| ≤ B. Then

Pr

[∣

∣

∣

∣

∣

1

m

m
∑

i=1

Xi − µ

∣

∣

∣

∣

∣

> γ

]

≤ δ,

whenever m ≥ (2B2/γ2) ln(2/δ).

Theorem 8 Let C be a class of Boolean functions and suppose that C is learnable with respect to
the uniform distribution by an LMN-style algorithm using index set Tε. Then for every ε such that
the set of parity functions indexed by Tε is a subset of C, C is learnable with respect to the uniform
distribution and with any known (D, R)-noise in time polynomial in 1/ε, 1/δ, 1/(1−2η), |TO(ε)|, and
1/∆ε

D, where η is the expectation of the classification noise rate.

Proof Let ∆ = ∆ε
D(C) and T = Tε. First we show that there is at most one c ∈ T so that

|αc| < ∆/2. Suppose that there are two αc1 and αc2 such that |αc1 | < ∆/2, |αc2 | < ∆/2. Then

∆2 ≤ sD(χc1 − χc2) = sD(χc1) + sD(χc2) = α2
c1 + α2

c2 ≤ ∆2/2,

which is a contradiction. Let c0 ∈ T , if it exists, be such that |αc0 | < ∆/2.
Now to find the coefficient of c ∈ T we take a sample S = {(xi ⊕ ai, f(xi)bi) | 1 ≤ i ≤ m}, m

to be determined later, (since the function f is {+1,−1}-valued, we choose bi ∈ {−1, +1}, so XOR
becomes multiplication) and estimate the expectation µc = Ex,a,b[f(x)bχc(x ⊕ a)]. So, for a fixed
c ∈ T , let βc = 1

m

∑m
i=1 χc(x

i ⊕ ai)f(xi)bi be the estimate for the above expectation. Note that

µc = Ex,a,b[f(x)bχc(x ⊕ a)] = Eb[b]Ex[f(x)χc(x)]Ea[χc(a)] = (1 − 2η)f̂(c)αc.

Because we are assuming that D and R are known, the factors of (1 − 2η) and αc are known1 and
can easily be eliminated for those c’s such that αc ≥ ∆/2. Thus, for such c’s, a good estimate of

1We assume that η and the αc’s are exactly known. More tedious error analysis could be done to eliminate this

assumption.
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the above expectation gives a good estimate of the Fourier coefficient f̂(c). Using Chernoff bounds
(c.f. Lemma 7), we can estimate this expectation with a sample size (and time complexity, with
polynomial blowup) of

m =
32|T |

ε(1 − 2η)2∆2
ln

4|T |

δ

(i.e., letting B = 1, γ =
√

ε/(2|T |)(1 − 2η)∆/2, and using δ/(2|T |) as the confidence). This will

guarantee that with probability at least 1 − δ/2, |βc − µc| <
√

ε
2|T |(1 − 2η)|αc| holds, for all c ∈ T

(except maybe c0); which in turn, implies that |β̂c − f̂(c)| <
√

ε/(2|T |), where

β̂c =
βc

(1 − 2η)αc

is the estimate for f̂(c). This shows that the set L of all of the relevant coefficients indexed by T ,
except maybe c0, can be estimated in time polynomial in |T |, 1/∆, and 1/ε.

To estimate the coefficient of f̂(c0) (only an approximation of this coefficient is required) we
can use the fact that the sum of all of the relevant coefficients indexed by T should be nearly
1. If after we have found estimates for all the coefficients for indices other than c0 the resulting
sum of squares is noticeably less than 1, then we know that f̂2(c0) must be approximately the
difference. Thus we can estimate f̂(c0) as well, although perhaps not quite as accurately as the
other coefficients. However, given the form of the LMN-style hypothesis h, it can be argued that
this estimate can be made sufficiently close to ensure that h is an ε-approximator. More formally,
let τ =

∑

c∈L β̂2
c be the estimate of

∑

c∈L f̂(c)2. With probability at least 1 − δ/2, we know that
∑

c∈L(βc − f̂(c))2 < ε/2. Thus

1 − ε ≤
∑

c∈T

f̂(c)2 ≤ f̂(c0)
2 + τ +

ε

2
,

and hence τ + f̂(c0)
2 ≥ 1− 3ε/2. If τ ≥ 1− 2ε then we can ignore the contribution of f̂(c0) and we

set β̂c0 = 0.
If τ < 1 − 2ε, then f̂(c0)

2 ≥ ε/2 (or |f̂(c0)| ≥
√

ε/2). To discover the sign of f̂(c0), we could
estimate this using a Chernoff sample of size m = 8

εα2
c0

(1−2η)2
ln(4

δ ) which would guarantee that with Flawed: m
may not be
poly in 1/∆!probability at least 1 − δ/2, the estimate for Ex,a,b[χc0(x ⊕ a)f(x)b] is within 1

2

√

ε/2|αc0 |(1 − 2η)

from the true mean; this implies that an estimate for f̂(c0) is within 1
2

√

ε/2 of the true value. So

we set β̂c0 accordingly. So the final hypothesis is h(x) = sign(
∑

c∈T β̂cχc(x)). By the standard
LMN analysis, we get

Pr
x

[sign(h(x)) 6= f(x)] ≤
1

4
Ex[(f(x) − h(x))2] =

1

4

∑

c

(f̂(c) − ĥ(c))2

=
1

4





∑

c6∈Tε

f̂(c)2 +
∑

c∈Tε

(f̂(c) − β̂c)
2





<
ε

4
+

ε

8
+

1

4
(f̂(c0) − β̂c0)

2.

So the true error rate (without attribute and classification noise) depends on the accuracy of our
estimate of f̂(c0).
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For the LMN-style algorithm for AC0, as long as 1/ε = O(npolylog(n)), the parity functions
indexed by Tε are in AC0 (by results in Linial et al. [9] and the fact that parity on polylogarithmic
bits can be computed in AC0). This gives us immediately the following result.

Theorem 9 For 1/ε = O(npolylog(n)), the class AC0 of constant depth, polynomial size circuits is
learnable under the uniform distribution with any known (D, R)-noise in time dominated by

npoly(log n)poly(1/∆ε
D).

As a specific example of the application of this theorem, we claim that if the attribute noise rate
on all attributes is independent with rate O(1/polylog(n)) for each attribute (but possibly different
values for each) then there is a learning algorithm for AC0 with time dominated by npolylog(n). To
see this, recall that the hypothesis in an LMN-style algorithm is formed using only (estimates of)
coefficients indexed by Tε, and that for AC0 all of these indices have polylogarithmic Hamming
weight. Furthermore, based on results of Linial et al. [9], if f and g are Boolean functions such that

Pr[f 6= g] > ε = Ω(1/npolylog(n))

then the difference f̂(c)− ĝ(c) must be at least 1/npolylog(n) large for at least one of the coefficients

indexed by Tε. But then sD(f − g) =
∑

c α2
c(f̂ − g)2(c) =

∑

c α2
c(f̂(c) − ĝ(c))2 (the final equality

follows by linearity of the Fourier transform) will be inverse quasipolynomially large as along as
αc = Ea∼D[χc(a)] is inverse quasipolynomial for all c in Tε. But then a simple probabilistic analysis
shows that in fact all of these αc will be sufficiently large as long as |c| is polylogarithmic in n. In
particular,

αc = Ea∼D[(−1)
∑n

i=1 aici ]

=
n

∏

i=1

Eai∼Di
[(−1)aici ], D is a product distribution

=
∏

i∈c

(1 − 2pi)

> (1 − 1/poly(log n))|c|, since (∀i) pi < 1/polylog(n)

> 1/npolylog(n), since |c| ≤ polylog(n)

Therefore, ∆ε
D is inverse quasipolynomially large, and our claim follows by the theorem.

However, we note that learning even very simple classes of functions can be hard if the attribute
noise D is unknown. Consider the problem of learning the monomials xi and xi under the no-noise
(noise rate equals 0) and full-noise (noise rate equals 1) distributions.
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Appendix A

We prove the connection between ∆D(f, g) and the optimal Bayes’ loss. Consider a fixed x and a
predictor that is given a bit b that is either f(x ⊕ a) or g(x ⊕ a), for a randomly chosen a from a
simple product distribution with rate p, and must predict whether b is labeled according to f or g.
For b ∈ {−1, +1}, let pb

f (x) = Pr[f(x ⊕ a) = b] and pb
g(x) = Pr[g(x ⊕ a) = b]. Then, by standard

Bayes theory, the Bayes predictor B, whose decision is given by

B(〈x, b〉) =

{

f if pb
f (x) > pb

g(x)

g otherwise

achieves a discrete loss of 1/2 − |pb
f (x) − pb

g(x)|/2, for the given fixed x, and this quantity is the
smallest achievable loss over all predictors. Here we are assuming uniform priors on f and g. Note
that |pb

f (x)−pb
g(x)| = |Ea[(f −g)(x⊕a)]|/2. Now allowing x to vary according to some distribution

D, the expected loss of the Bayes predictor is

L∗ =
1

2
−

1

2
Ex[|pb

f (x) − pb
g(x)|] =

1

2
−

1

2
∆D(f, g).

By the same token, there is no predictor that has smaller expected loss than L∗.
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