A NO FREE LUNCH RESULT FOR OPTIMIZATION AND ITS IMPLICATIONS

Marisa B. Smith

Advisor: Dr. Jeffrey Jackson
Department of Mathematics & Computer Science
Duquesne University

Thesis Presentation May 5, 2009

Outline

- Motivation
- Introduction/Background
- □ NFL Theorems for Optimization
- Result 1: A New NFL Theorem
- Result 2: A Superior Choosing Procedure
- □ Conclusion/Future Work

Motivation

- □ No Free Lunch Theorems for Learning
 - On the rationality of belief in free lunches in learning
 - J. C. Jackson and C. Tamon
 - Unpublished manuscript-in-preparation
 - Apply similar ideas to the NFL theorems for optimization
- Address misinterpretation of NFL results
 - No Free Lunch Theorems for Optimization
 - D. H. Wolpert and W. G. Macready
 - <u>1997</u>

Introduction

- Combinatorial Optimization
 - Functions (problems) in which a finite search space X maps to a finite space of cost values Y
- Typical Goal of Optimization
 - □ Find maximum (or minimum) of a function
 - Search for large (or small) cost values
- Optimization Algorithm
 - Some method of choosing x's in X in order to meet this goal

Interests in Optimization

- Performance comparison of different optimization algorithms
 - On average, how well do different algorithms do
 - Which algorithms are "better" than others
- In this paper, interested whether there exist algorithms that, on average, are better than random

Background on NFL Theorems

- Mathematically, when averaged over all possible optimization problems, the performance of any pair of optimization algorithms is statistically equivalent [WolMac97]
- What Wolpert and Macready infer from this
 - Instances of good performance are <u>necessarily</u> offset by instances of poor performance
 - "no free lunch"
 - On average, hill-climbing is no better than hill-descending
 - On average, hill-climbing is no better than random guessing
 - On average, no algorithm is better than random guessing

Objective of Present Study

- □ Result 1
 - Extend NFL theorem
 - Seems to imply that no choosing procedure better than random
- □ Result 2
 - □ Give reason to question this inference
 - Use probability theory and concepts in cryptography
 - Implications of NFL theorem are not as negative as expected

Some Intuition on Why the NFL Theorems Hold

- Averaging over <u>all possible</u> problems (functions)
 - Mathematically, when averaged over all possible optimization problems, the performance of any pair of optimization algorithms is statistically equivalent [WolMac97]
- On unknown function, past performance of an algorithm tells us nothing about future performance
 - "Good" algorithm can suddenly perform badly
 - "Bad" algorithm can suddenly perform well

Points in Initial Search

Possible Points in Continuation of Search 1

Actual Function 1

Points in Initial Search

Possible Points in Continuation of Search 2

Actual Function 2

Possible Points in Continuation of Search 3

Actual Function 3

Random Points

Random Function

Some Intuition on Why the NFL Theorems Hold

- Algorithm initially finds "good" points
 - Depending on actual function
 - Can continue to find good points
 - Can start to go to bad points
 - Can go anywhere
- Algorithm initially finds "bad" points, same possibilities

Some Intuition on Why the NFL Theorems Hold

- Key point: Averaging over <u>all possible</u> functions
 - After initial search, next steps an algorithm takes could lead anywhere if all possible functions considered
 - This is true of all algorithms
 - All algorithms: set of searched (x,y) values, select next x
 - For some function, selected x-value takes on each possible y-value
 - Averaging over all of these possibilities
 - When averaging over all functions, algorithm performance is the same

A Particular NFL Theorem of Interest

- Choosing Procedure NFL Theorem [WolMac97]
- □ Choosing Procedure
 - Meta-algorithm that compares performance of two algorithms after m steps
 - Chooses one of the algorithms to use for continuation of search
- Theorem: Averaged over all possible algorithm pairs, performance of any two choosing procedures is equivalent
 - There is no free lunch for choosing procedures

Preliminaries

- Sample from an algorithm run (denoted d)
 - The (x,y) pairs the algorithm visits in its search
- Optimization algorithm
 - Mapping from previously visited (ordered) set of points to a single new (previously unvisited) point in X
 - $(x_1,y_1),...,(x_m,y_m) \rightarrow x_{m+1} | x_{m+1} \text{ not in } \{x_1,...,x_m\}$

Preliminaries

- □ Performance of an algorithm
 - Based on y-values (cost values) produced from a certain number of searched points
 - \blacksquare y-values from m iterations of the algorithm
 - d_m^y
 - Performance measure: $\Phi(d_m^y)$
 - Note: Revisits are not counted

Preliminaries

- Possible performance measures
 - Largest (or smallest) cost value (y-value) in the sample
 - Some function of the histogram of cost values
 - Histogram of cost values: $\vec{c} = (cy_1, cy_2, \dots, cy_{|y|})$
 - $\mathbf{v}_{\mathcal{Y}_i} = \mathbf{v}_{\mathcal{Y}_i} = \mathbf{v}_{\mathcal{Y}_i}$ occurs in sample
 - Apply some function that maps the histogram to a "goodness" measure or ranking
 - One possibility $\Phi(\vec{c}): \vec{c} \mapsto \mathbb{R}$
 - Larger values indicate a better ranking

Histogram Examples

- Result 1
 - Prove NFL Theorem that is an extension of the Choosing Procedure NFL Theorem

Original

Single run of algorithms

- Performance
 - Continuation of single algorithm run

Extension

- Multiple algorithm runs
 - Training set
 - Choose starting values uniformly at random
- □ Performance
 - New algorithm run, starting from a new initial x-value
 - Test run

- □ New Choosing Procedure Theorem
 - \square Run a and a' N times on some function f (training runs)
 - Common starting value for each run is chosen uniformly at random
 - \blacksquare Call these values $x_1,...,x_N$
 - \square CP examines the samples $d_1, d_2, ..., d_N$ and $d'_1, d'_2, ..., d'_N$ (each of size m) which result from these runs

Samples

From a

- $d_2: \{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$
- □ .
- -

From a'

- □ New Choosing Procedure Theorem
 - \square CP decides which algorithm, a or a', to use on the (N+1)th algorithm run (test run) on f
 - Starting value chosen uniformly at random
 - Must be new starting value
 - x_{N+1} not in $\{x_1,...,x_N\}$

Result 1: New NFL Theorem

$$\sum_{a,a'} P(\vec{c}_{>m\cdot N}|f,x_{N+1},d_1,d_2,\ldots,d_N,d_1',d_2',\ldots,d_N',m,a,a',A)$$

$$= \sum_{a,a'} P(\vec{c}_{>m\cdot N}|f,x_{N+1},d_1,d_2,\ldots,d_N,d'_1,d'_2,\ldots,d'_N,m,a,a',B)$$

- Fixed samples, arbitrary new starting point, arbitrary fixed function, A and B are any two CP's
- □ Sum over all algorithm pairs consistent with samples
 - Probability of obtaining a particular histogram is independent of CP
- Performance (function of histogram) is independent of CP
- □ On average, performance of any two CP's is equivalent

Sketch of Proof

- \square Concerned with $P(\vec{c}_{>m\cdot N}|\ldots)$
 - □ Probability of a particular histogram of cost values on the (N+1)th run (test run)
- \square Starting value on test run, x_{N+1} , not in $\{x_1, \dots, x_N\}$
 - What algorithms do on test run is independent of the training runs
 - Both algorithms are free to visit any possible sequence of m values beginning with x_{N+1}

Sketch of Proof

- \square Both summations sum over the same set of possibilities for $\vec{c}_{>m\cdot N}$
 - Can be viewed as a change of variables
 - Sum of probabilities is independent of the particular choosing procedure
 - Sum of probabilities for choosing procedure A equals sum of probabilities for choosing procedure B
 - $\sum_{a,a'} P(\vec{c}_{>m\cdot N}|f,x_{N+1},d_1,d_2,\ldots,d_N,d_1',d_2',\ldots,d_N',m,a,a',A)$

$$= \sum_{a,a'} P(\vec{c}_{>m\cdot N}|f,x_{N+1},d_1,d_2,\ldots,d_N,d_1',d_2',\ldots,d_N',m,a,a',B)$$

Corollary

$$E_{a,a',x_{N+1}} \left[\Phi(\vec{c}_{>m\cdot N}) | f, x_{N+1}, d_1, d_2, \dots, d_N, d'_1, d'_2, \dots, d'_N, m, a, a', A \right]$$

$$= E_{a,a',x_{N+1}} \left[\Phi(\vec{c}_{>m\cdot N}) | f, x_{N+1}, d_1, d_2, \dots, d_N, d'_1, d'_2, \dots, d'_N, m, a, a', B \right]$$

For any fixed training data, the expected performance—over choice of starting point and algorithms—of any two choosing procedures is equivalent

What Is Inferred from Theorem

- Wolpert and Macready
 - Barring assumptions about the optimization algorithms and/or f
 - No theoretical justification for using any particular choosing procedure
 - On average, no choosing procedure is any better than a random choosing procedure
- □ We will show that this is not necessarily the case

A Superior Choosing Procedure

□ Result 2

Show that despite this theorem, there exists (at least) one choosing procedure that, on average, is better than random

A Superior Choosing Procedure

- □ This choosing procedure makes its choice as follows
 - If one algorithm outperforms the other on <u>all</u> algorithm runs in the training set
 - Choose this algorithm
 - Otherwise
 - Randomly choose between the algorithms
 - Each algorithm is chosen with probability ½
- Call this the <u>unanimous choosing procedure</u> (UCP)
 - Only makes choice when unanimous support for one of the algorithms

Why the Procedure Is Superior

- If one algorithm consistently beats the other for all N runs in the training sets
 - Using standard probability theory
 - Probability that UCP "fooled" into thinking this algorithm is better becomes exponentially small as N grows
- □ To get fooled
 - One algorithm wins on all runs in the training set
 - More often than not this algorithm will <u>lose</u> on a test run

Why the Procedure Is Superior

- If choose a large enough (yet reasonable) value for the number of training runs N
 - Probability that the UCP is fooled in such a way is extremely small, perhaps around 2⁻¹²⁸
 - Rational to believe or safe to assume that UCP won't be fooled
- □ If not fooled into making bad decisions
 - Good performance not necessarily offset by bad performance
 - Average performance is better than random

Cryptographic Practice and Rationality

- Basis of using 2⁻¹²⁸ as an appropriately small probability
- National Security Agency (NSA) uses encryption algorithm AES-128
 - Encrypt classified documents
 - □ Uses 128-bit keys
 - Relies on probability of 2⁻¹²⁸ that random guess will be able to decrypt document

Cryptographic Practice and Rationality

- \square How small is 2^{-128} ?
 - Even if
 - Same key used to encrypt every classified document
 - A billion documents encrypted per second for a billion years
 - Systematically guess and check distinct keys
 - Probability of any guesses succeeding is less than 1 in 10 trillion [JacTam]
- Rational to believe or safe to assume
 - Real-world events with extremely small probability of occurring will not occur, even though mathematically we cannot rule out their possibility [JacTam]

- How many training runs is sufficient?
 - \blacksquare Enough so that the prediction error of the UCP is less than $\frac{1}{2}$
- Prediction error
 - Probability that the chosen algorithm will perform worse on a test run
- \square Why prediction error less than $\frac{1}{2}$?
 - When a random choosing procedure selects an algorithm
 - With probability ½ this choice is correct
 - Chosen algorithm will perform better on a test run
 - With probability $\frac{1}{2}$ this choice is incorrect
 - The <u>prediction error</u> is ½

Prediction Error of UCP

- □ Unanimous choosing procedure
 - One algorithm does <u>not</u> consistently beat the other
 - Randomly selects an algorithm
 - Prediction error is ½
 - One algorithm does consistently beat the other
 - If N is large enough
 - With extremely high probability, prediction error is less than $\frac{1}{2}$
 - 1-2⁻¹²⁸
 - Averaged over unseen starting values, prediction error is less than $\frac{1}{2}$
 - Better than random

- Using probability theory
 - Can show that it's overwhelming likely that a certain classification error holds
 - Classification error
 - Probability over <u>all possible</u> starting values that the chosen algorithm performs worse
 - Prediction error probability over unseen starting values
 - Use classification error to calculate prediction error

- Can show that it is extremely likely that a particular classification error holds
 - Fix this value to 0.24
 - Even if prediction error is double the classification error
 - Prediction error is $0.48 < \frac{1}{2}$
 - If number of training runs is less than $\frac{1}{2}|X|$ then prediction error is at most double (because uniform choice of x)
- Need to calculate N such that with extremely high probability
 - Classification error is no more than 0.24
 - Prediction error is no more than 0.48

- □ If classification error is at least 0.24
 - On one training run
 - Probability over randomized choice of starting points that the UCP does <u>not</u> pick losing algorithm is at most
 - 1- 0.24 = 0.76
 - On N training runs
 - Probability over randomized choice of starting points that the UCP fails to detect any losses is at most
 - $(1 0.24)^{N} = (0.76)^{N}$

- □ On the test run of the algorithms
 - Probability that the UCP is "fooled" by the randomized choice of starting values in the training set is at most
 - (0.76)^N
 - □ Probability (0.76)^N that fooled into choosing the "worse" algorithm
 - Because no losses were detected during training runs

- □ To calculate sufficient training set
 - □ Set probability of being fooled, $(0.76)^N$, less than some extraordinarily small value $\delta > 0$
 - □ Solve for N
- \square We will set the extraordinarily small value δ to $2^{-\sigma}$
 - \Box Let $\sigma = 128$
 - $lue{f \Box}$ This choice of $m \sigma$ is from standard cryptographic practice

- \Box In order to find a sufficient training set size N such that $(0.76)^{\rm N}<\delta$
 - Use the following formula from [Alguin88]

$$N \ge \left\lceil \frac{1}{\epsilon_c} ln(\frac{1}{\delta}) \right\rceil$$

- $lue{}$ ϵ_c is the classification error
- □ Note that $(0.76)^N$ is just $(1 \epsilon_c)^N$, so $\epsilon_c = 0.24$
- \square For $\epsilon_c=0.24$ and $\delta=2^{-128}$, we have

$$\left[\frac{1}{\epsilon_c} ln(\frac{1}{\delta})\right] = \left[\frac{1}{0.24} ln(\frac{1}{2^{-128}})\right] = 370$$

- When the UCP makes a choice (doesn't randomly choose)
 - Values of N greater than or equal to 370 are sufficient to
 - Produce an algorithm choice that with probability (1-2⁻¹²⁸) has
 - Classification error at most 0.24
 - Prediction error at most 0.48

Why UCP is Superior to Random

- □ UCP either
 - Randomly chooses
 - Prediction error of ½
 - Makes a choice
 - Overwhelmingly likely/rational to believe/safe to assume that prediction error is less than $\frac{1}{2}$
- \square On average, prediction error is less than $\frac{1}{2}$
 - Better than random

Comparison

- □ NFL theorem
 - Seems to imply expected prediction error is exactly $\frac{1}{2}$ for all choosing procedures
- □ We show
 - If believe claim regarding extremely small probabilities
 - Perform enough training runs
 - Rational to believe or safe to assume the expected prediction error of the UCP is less than $\frac{1}{2}$
 - Implications of the NFL theorem are not as negative as expected

Comparison to the St. Petersburg Paradox

- Similar paradox between mathematical probabilities and rational beliefs
- □ St. Petersburg Paradox
 - Gambling game
 - Flip fair coin until get "tails"
 - If "tails" comes up on
 - 1st flip → payout of \$2
 - 2^{nd} flip \rightarrow payout of \$4
 - \blacksquare kth flip \rightarrow payout of \$2^k

Comparison to the St. Petersburg Paradox

Expected payout of game is arbitrarily large

Expected payout
$$=\sum_{k=1}^{\infty}$$
 (Payout on 1st "tails" on kth flip) $\cdot Pr$ [1st "tails" on kth flip] $=\sum_{k=1}^{\infty} 2^k \cdot 2^{-k}$ $=\sum_{k=1}^{\infty} 1$ $=\infty$

Comparison to St. Petersburg Paradox

- How much should someone be willing to pay to play this game?
 - Most rational people would not even pay \$25 [Hacking80]

Comparison to St. Petersburg Paradox

- □ Paradox
 - Mathematically
 - Should be willing to pay arbitrarily large amount
 - Most rational people not willing to do this
 - Mathematics doesn't always provide a good model of rational real-world behavior
- One reason paradox occurs
 - Extremely low probability events used to calculate expected payout
 - Events such as
 - Flipping a coin 128 times before a "tails" comes up

Conclusion

- Mathematically
 - Show an NFL result
 - On average, the performance of any two choosing procedures is mathematically equivalent
- Using probability theory and cryptography concepts
 - If rational to believe/safe to assume extraordinarily small probability events won't occur
 - There exists (at least) one CP—the UCP—that, on average, is better than random
- Although in strict mathematical sense NFL theorem holds
 - Implications are not as negative as expected

Future Work

- □ Allow ties
 - Investigate appropriate cut-off for an allowable percentage of ties
- Analysis of not requiring one algorithm to <u>always</u>
 win
 - Better if one algorithm wins on 75% of training runs? 51%?
- Combine with analysis of NFL theorems for learning

References

- E. H. L. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley and Sons, Ltd., Chichester, England (UK), 1997.
- [2] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.
 - [3] D. L. Smitley and I. Lee. Comparative analysis of hill climbing mapping algorithms. Technical report, University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-94, November 1988.
 - [4] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.
- [5] J. C. Jackson and C. Tamon. On the rationality of belief in free lunches in learning. Unpublished manuscript-in-preparation.

References

- [6] National Institute of Standards and Technology. FIPS PUB 197: Advanced Encryption Standard (AES). National Institute for Standards and Technology, Gaithersburg, MD, November 2001.
- [7] Committee on National Security Systems. Fact sheet no. 1 for the national policy on the use of the advanced encryption standard (aes) to protect national security systems and national security information. Technical report, June 2003.
- [8] D. Bernoulli. Exposition of a new theory on the measurement of risk. *Econometrica*, 22(1):23–36, 1954.
- [9] I. Hacking. Strange expectations. Philosophy of Science, 47(4):562–567, 1980.
- [10] D. H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7):1341–1390, 1996.