
A NO FREE LUNCH RESULT FOR 

OPTIMIZATION AND ITS 

IMPLICATIONS

Marisa B. Smith

Advisor: Dr. Jeffrey Jackson

Department of Mathematics & Computer Science

Duquesne University

Thesis Presentation

May 5, 2009



Outline

 Motivation

 Introduction/Background

 NFL Theorems for Optimization

 Result 1: A New NFL Theorem

 Result 2: A Superior Choosing Procedure

 Conclusion/Future Work



Motivation

 No Free Lunch Theorems for Learning

On the rationality of belief in free lunches in learning 

 J. C. Jackson and C. Tamon

 Unpublished manuscript-in-preparation

 Apply similar ideas to the NFL theorems for 

optimization

 Address misinterpretation of NFL results

 No Free Lunch Theorems for Optimization

 D. H. Wolpert and W. G. Macready

 1997



Introduction

 Combinatorial Optimization

 Functions (problems) in which a finite search space X

maps to a finite space of cost values Y

 Typical Goal of Optimization

 Find maximum (or minimum) of a function 

 Search for large (or small) cost values

 Optimization Algorithm

 Some method of choosing x’s in X in order to meet this 

goal



Interests in Optimization

 Performance comparison of different optimization 

algorithms

On average, how well do different algorithms do

Which algorithms are ―better‖ than others

 In this paper, interested whether there exist 

algorithms that, on average, are better than 

random



Background on NFL Theorems

 Mathematically, when averaged over all possible 

optimization problems, the performance of any pair of 

optimization algorithms is statistically equivalent 

[WolMac97]

 What Wolpert and Macready infer from this

 Instances of good performance are necessarily offset by 

instances of poor performance 

 ―no free lunch‖

 On average, hill-climbing is no better than hill-descending

 On average, hill-climbing is no better than random guessing

 On average, no algorithm is better than random guessing



Objective of Present Study

 Result 1

 Extend NFL theorem

 Seems to imply that no choosing procedure better than 

random

 Result 2

Give reason to question this inference

 Use probability theory and concepts in cryptography

 Implications of NFL theorem are not as negative as 

expected



Some Intuition on Why the NFL 

Theorems Hold

 Averaging over all possible problems (functions)

Mathematically, when averaged over all possible 

optimization problems, the performance of any pair of 

optimization algorithms is statistically equivalent 

[WolMac97]

 On unknown function, past performance of an 

algorithm tells us nothing about future performance

 ―Good‖ algorithm can suddenly perform badly

 ―Bad‖ algorithm can suddenly perform well
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Possible Points in Continuation of 

Search 1
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Actual Function 1
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Points in Initial Search
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Possible Points in Continuation of 

Search 2
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Actual Function 2
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Possible Points in Continuation of 

Search 3
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Actual Function 3
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Random Points
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Some Intuition on Why the NFL 

Theorems Hold

 Algorithm initially finds ―good‖ points

 Depending on actual function

 Can continue to find good points

 Can start to go to bad points

 Can go anywhere

 Algorithm initially finds ―bad‖ points, same 

possibilities



Some Intuition on Why the NFL 

Theorems Hold

 Key point: Averaging over all possible functions 

 After initial search, next steps an algorithm takes could 

lead anywhere if all possible functions considered

 This is true of all algorithms

 All algorithms:  set of searched (x,y) values, select next x

 For some function, selected x-value takes on each possible 

y-value

 Averaging over all of these possibilities

When averaging over all functions, algorithm 

performance is the same



A Particular NFL Theorem of Interest

 Choosing Procedure NFL Theorem [WolMac97]

 Choosing Procedure

Meta-algorithm that compares performance of two 
algorithms after m steps

 Chooses one of the algorithms to use for continuation of 
search

 Theorem: Averaged over all possible algorithm 
pairs, performance of any two choosing procedures 
is equivalent

 There is no free lunch for choosing procedures



Preliminaries

 Sample from an algorithm run (denoted d)

 The (x,y) pairs the algorithm visits in its search

 Optimization algorithm

Mapping from previously visited (ordered) set of points 

to a single new (previously unvisited) point in X

 (x1,y1),…,(xm,ym)  xm+1| xm+1 not in {x1,…,xm}



Preliminaries

 Performance of an algorithm

 Based on y-values (cost values) produced from a certain 

number of searched points

 y-values from m iterations of the algorithm



 Performance measure:  

 Note: Revisits are not counted



Preliminaries

 Possible performance measures

 Largest (or smallest) cost value (y-value) in the sample

 Some function of the histogram of cost values

 Histogram of cost values:                                    ,

 = number of times the cost value       occurs in sample

 Apply some function that maps the histogram to a 

―goodness‖ measure or ranking

One possibility                       

 Larger values indicate a better ranking



Histogram Examples
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Extending the Choosing Procedure NFL 

Theorem

 Result 1

 Prove NFL Theorem that is an extension of the Choosing 

Procedure NFL Theorem



Extending the Choosing Procedure NFL 

Theorem

 Single run of 

algorithms

 Performance

 Continuation of single 

algorithm run

 Multiple algorithm runs 

 Training set

 Choose starting values 
uniformly at random

 Performance 

 New algorithm run, 
starting from a new 
initial x-value

 Test run

Original Extension



Extending the Choosing Procedure NFL 

Theorem

 New Choosing Procedure Theorem

 Run a and a’ N times on some function f (training runs)

 Common starting value for each run is chosen uniformly at 

random

 Call these values x1,…,xN

 CP examines the samples d1, d2, …, dN and d’1, d’2, 

…, d’N (each of size m) which result from these runs



Samples

 d1:   
{(x(1),y(1)),…,(x(m),y(m) )}

 d2:   
{(x(1),y(1)),…,(x(m),y(m) )}

 .

 .

 .

 dN:   
{(x(1),y(1)),…,(x(m),y(m) )}

 d’1:  
{(x(1),y(1)),…,(x(m),y(m) )}

 d’2 : 
{(x(1),y(1)),…,(x(m),y(m) )}

 .

 .

 .

 d’N : 
{(x(1),y(1)),…,(x(m),y(m) )}

From a From a’



Extending the Choosing Procedure NFL 

Theorem

 New Choosing Procedure Theorem

 CP decides which algorithm, a or a’, to use on the 

(N+1)th algorithm run (test run) on f

 Starting value chosen uniformly at random

Must be new starting value

 xN+1 not in {x1,…,xN}



Result 1: New NFL Theorem



 Fixed samples, arbitrary new starting point, arbitrary fixed 
function, A and B are any two CP’s

 Sum over all algorithm pairs consistent with samples

 Probability of obtaining a particular histogram is independent of 
CP

 Performance (function of histogram) is independent of CP

 On average, performance of any two CP’s is equivalent



Sketch of Proof

 Concerned with

 Probability of a particular histogram of cost values on 

the (N+1)th run (test run)

 Starting value on test run, xN+1 , not in {x1,…,xN}

What algorithms do on test run is independent of the 

training runs

 Both algorithms are free to visit any possible sequence 

of m values beginning with xN+1



Sketch of Proof

 Both summations sum over the same set of 

possibilities for

 Can be viewed as a change of variables

 Sum of probabilities is independent of the particular 

choosing procedure

 Sum of probabilities for choosing procedure A equals sum of 

probabilities for choosing procedure B





Corollary

 For any fixed training data, the expected 

performance—over choice of starting point and 

algorithms—of any two choosing procedures is 

equivalent



What Is Inferred from Theorem

 Wolpert and Macready

 Barring assumptions about the optimization algorithms 

and/or f

 No theoretical justification for using any particular choosing 

procedure

On average, no choosing procedure is any better than a 

random choosing procedure

 We will show that this is not necessarily the case



A Superior Choosing Procedure

 Result 2

 Show that despite this theorem, there exists (at least) 

one choosing procedure that, on average, is better than 

random



A Superior Choosing Procedure

 This choosing procedure makes its choice as follows

 If one algorithm outperforms the other on all algorithm 

runs in the training set

 Choose this algorithm

Otherwise

 Randomly choose between the algorithms

 Each algorithm is chosen with probability ½

 Call this the unanimous choosing procedure (UCP)

Only makes choice when unanimous support for one of 

the algorithms



Why the Procedure Is Superior

 If one algorithm consistently beats the other for all 

N runs in the training sets

 Using standard probability theory

 Probability that UCP ―fooled‖ into thinking this algorithm is 

better becomes exponentially small as N grows

 To get fooled

One algorithm wins on all runs in the training set

More often than not this algorithm will lose on a test run



Why the Procedure Is Superior

 If choose a large enough (yet reasonable) value for 
the number of training runs N

 Probability that the UCP is fooled in such a way is 
extremely small, perhaps around 2-128

 Rational to believe or safe to assume that UCP won’t be 
fooled

 If not fooled into making bad decisions

Good performance not necessarily offset by bad 
performance 

 Average performance is better than random



Cryptographic Practice and Rationality

 Basis of using 2-128 as an appropriately small 

probability

 National Security Agency (NSA) uses encryption 

algorithm AES-128

 Encrypt classified documents

 Uses 128-bit keys

 Relies on probability of 2-128 that random guess will be able 

to decrypt document



Cryptographic Practice and Rationality

 How small is 2-128?

 Even if

 Same key used to encrypt every classified document

 A billion documents encrypted per second for a billion years

 Systematically guess and check distinct keys

 Probability of any guesses succeeding is less than 1 in 
10 trillion [JacTam]

 Rational to believe or safe to assume

 Real-world events with extremely small probability of 
occurring will not occur, even though mathematically we 
cannot rule out their possibility [JacTam]



A Sufficient Training Set

 How many training runs is sufficient?

 Enough so that the prediction error of the UCP is less than ½ 

 Prediction error

 Probability that the chosen algorithm will perform worse on 
a test run

 Why prediction error less than ½?

 When a random choosing procedure selects an algorithm

 With probability ½ this choice is correct

 Chosen algorithm will perform better on a test run

 With probability ½ this choice is incorrect

 The prediction error is ½ 



Prediction Error of UCP

 Unanimous choosing procedure

One algorithm does not consistently beat the other

 Randomly selects an algorithm

 Prediction error is ½ 

One algorithm does consistently beat the other

 If N is large enough

 With extremely high probability, prediction error is less than ½ 

 1-2-128

 Averaged over unseen starting values, prediction error 

is less than ½ 

 Better than random



A Sufficient Training Set

 Using probability theory

 Can show that it’s overwhelming likely that a certain 

classification error holds

 Classification error

 Probability over all possible starting values that the chosen 

algorithm performs worse

 Prediction error – probability over unseen starting values

 Use classification error to calculate prediction error



A Sufficient Training Set

 Can show that it is extremely likely that a particular 
classification error holds

 Fix this value to 0.24

 Even if prediction error is double the classification error

 Prediction error is 0.48 < ½ 

 If number of training runs is less than ½|X| then prediction error 
is at most double (because uniform choice of x)

 Need to calculate N such that with extremely high 
probability

 Classification error is no more than 0.24

 Prediction error is no more than 0.48



A Sufficient Training Set

 If classification error is at least 0.24

On one training run

 Probability over randomized choice of starting points that 

the UCP does not pick losing algorithm is at most 

 1- 0.24 = 0.76

On N training runs

 Probability over randomized choice of starting points that 

the UCP fails to detect any losses is at most

 (1 – 0.24)N =  (0.76)N



A Sufficient Training Set

 On the test run of the algorithms

 Probability that the UCP is ―fooled‖ by the randomized 

choice of starting values in the training set is at most

 (0.76)N

 Probability (0.76)N that fooled into choosing the 

―worse‖ algorithm

 Because no losses were detected during training runs



A Sufficient Training Set

 To calculate sufficient training set

 Set probability of being fooled, (0.76)N, less than some 

extraordinarily small value    > 0

 Solve for N

 We will set the extraordinarily small value    to

 Let     = 128

 This choice of     is from standard cryptographic 

practice



A Sufficient Training Set

 In order to find a sufficient training set size N such 

that (0.76)N <    

 Use the following formula from [Alguin88]

 is the classification error

 Note that (0.76)N is just (1- )N, so     =0.24 

 For     =0.24 and     = 2-128, we have



A Sufficient Training Set

 When the UCP makes a choice (doesn’t randomly 

choose)

 Values of N greater than or equal to 370 are sufficient 

to

 Produce an algorithm choice that with probability (1-2-128) 

has

 Classification error at most 0.24

 Prediction error at most 0.48



Why UCP is Superior to Random

 UCP either

 Randomly chooses

 Prediction error of ½ 

Makes a choice

Overwhelmingly likely/rational to believe/safe to assume 

that prediction error is less than ½ 

 On average, prediction error is less than ½

 Better than random



Comparison

 NFL theorem

 Seems to imply expected prediction error is exactly ½ 
for all choosing procedures

 We show

 If believe claim regarding extremely small 
probabilities

 Perform enough training runs

 Rational to believe or safe to assume the expected 
prediction error of the UCP is less than ½ 

 Implications of the NFL theorem are not as negative as 
expected



Comparison to the St. Petersburg 

Paradox

 Similar paradox between mathematical 

probabilities and rational beliefs

 St. Petersburg Paradox

Gambling game

 Flip fair coin until get ―tails‖

 If ―tails‖ comes up on

 1st flip  payout of $2

 2nd flip  payout of $4

 kth flip  payout of $2k



Comparison to the St. Petersburg 

Paradox

 Expected payout of game is arbitrarily large



Comparison to St. Petersburg Paradox

 How much should someone be willing to pay to play 

this game?

Most rational people would not even pay $25 

[Hacking80]



Comparison to St. Petersburg Paradox

 Paradox

 Mathematically

 Should be willing to pay arbitrarily large amount

 Most rational people not willing to do this

 Mathematics doesn’t always provide a good model of rational 
real-world behavior

 One reason paradox occurs

 Extremely low probability events used to calculate expected 
payout

 Events such as

 Flipping a coin 128 times before a ―tails‖ comes up



Conclusion

 Mathematically

 Show an NFL result

 On average, the performance of any two choosing procedures is 

mathematically equivalent

 Using probability theory and cryptography concepts

 If rational to believe/safe to assume extraordinarily small 

probability events won’t occur

 There exists (at least) one CP—the UCP—that, on average, is 

better than random

 Although in strict mathematical sense NFL theorem holds

 Implications are not as negative as expected



Future Work

 Allow ties

 Investigate appropriate cut-off for an allowable 

percentage of ties

 Analysis of not requiring one algorithm to always

win

 Better if one algorithm wins on 75% of training runs? 

51%?

 Combine with analysis of NFL theorems for learning
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