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Motivation

No Free Lunch Theorems for Learning

On the rationality of belief in free lunches in learning
J. C. Jackson and C. Tamon
Unpublished manuscript-in-preparation

Apply similar ideas to the NFL theorems for
optimization

Address misinterpretation of NFL results

No Free Lunch Theorems for Optimization
D. H. Wolpert and W. G. Macready
1997



Introduction

Combinatorial Optimization

Functions (problems) in which a finite search space X
maps to a finite space of cost values Y

Typical Goal of Optimization
Find maximum (or minimum) of a function
Search for large (or small) cost values
Optimization Algorithm

Some method of choosing x’s in X in order to meet this
goal



Interests in Optimization

Performance comparison of different optimization
algorithms
On average, how well do different algorithms do
Which algorithms are “better” than others
In this paper, interested whether there exist

algorithms that, on average, are better than
random



Background on NFL Theorems

Mathematically, when averaged over all possible
optimization problems, the performance of any pair of
optimization algorithms is statistically equivalent

[WolMac97]
What Wolpert and Macready infer from this

Instances of good performance are necessarily offset by

instances of poor performance

“no free lunch”
On average, hill-climbing is no better than hill-descending
On average, hill-climbing is no better than random guessing

On average, no algorithm is better than random guessing



Obijective of Present Study

Result 1
Extend NFL theorem

Seems to imply that no choosing procedure better than
random

Result 2
Give reason to question this inference

Use probability theory and concepts in cryptography

Implications of NFL theorem are not as negative as
expected



Some Intuition on Why the NFL
Theorems Hold

Averaging over all possible problems (functions)

Mathematically, when averaged over all possible
optimization problems, the performance of any pair of
optimization algorithms is statistically equivalent

[WolMac97]

On unknown function, past performance of an
algorithm tells us nothing about future performance
“Good” algorithm can suddenly perform badly

“Bad” algorithm can suddenly perform well
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Some Intuition on Why the NFL
Theorems Hold

Algorithm initially finds “good” points
Depending on actual function
Can continue to find good points

Can start to go to bad points

Can go anywhere

Algorithm initially finds “bad” points, same
possibilities



Some Intuition on Why the NFL
Theorems Hold

Key point: Averaging over all possible functions

After initial search, next steps an algorithm takes could
lead anywhere if all possible functions considered

This is true of all algorithms

All algorithms: set of searched (x,y) values, select next x

For some function, selected x-value takes on each possible
y-value

Averaging over all of these possibilities

When averaging over all functions, algorithm
performance is the same



A Particular NFL Theorem of Interest

Choosing Procedure NFL Theorem [WolMac97]
Choosing Procedure

Meta-algorithm that compares performance of two
algorithms after m steps

Chooses one of the algorithms to use for continuation of
search

Theorem: Averaged over all possible algorithm
pairs, performance of any two choosing procedures
is equivalent

There is no free lunch for choosing procedures



Preliminaries

Sample from an algorithm run (denoted d)

The (x,y) pairs the algorithm visits in its search
Optimization algorithm

Mapping from previously visited (ordered) set of points
to a single new (previously unvisited) point in X

(X1,Y1)ree (XY 2 X7 | %47 notin {x;,...,x_}



Preliminaries

Performance of an algorithm

Based on y-values (cost values) produced from a certain
number of searched points

y-values from m iterations of the algorithm
y
d?

Performance measure: @(d¥)

Note: Revisits are not counted



Preliminaries

Possible performance measures
Largest (or smallest) cost value (y-value) in the sample
Some function of the histogram of cost values
Histogram of cost values: ¢ = (cy,,cy,, ..., CYy)
cy. = number of times the cost value ): occurs in sample

Apply some function that maps the histogram to a
“goodness” measure or ranking

One possibility d():c—R

Larger values indicate a better ranking



Histogram Examples

Histogram of y Histogram of y Histogram of y
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Extending the Choosing Procedure NFL
Theorem

Result 1

Prove NFL Theorem that is an extension of the Choosing
Procedure NFL Theorem



Extending the Choosing Procedure NFL

Theorem
I

o1 Single run of - Multiple algorithm runs
algorithms 2 Training set

=1 Choose starting values

uniformly at random

1 Performance
erto 1 Performance

=1 Continuation of single

©1 New algorithm run,
algorithm run starting from a new
initial x-value

= Test run



Extending the Choosing Procedure NFL
Theorem

New Choosing Procedure Theorem

Run a and o’ N times on some function f (training runs)

Common starting value for each run is chosen uniformly at
random

Call these values x;,...,xy

CP examines the samples d;, d,, ..., dyand d’;, d',,
..., d’y (each of size m) which result from these runs



Samples
N

ood:

{(]x“ ) )’(] )):- . .,(x(m),y(m) )} {(XU (1 )),. . .,(x(m),y(m) )}
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{(X(.I )ly(.I ))I° ° 'I(X(m)ly(m) )} {(X ] ) (] )) I(X(m)ly(m) )}



Extending the Choosing Procedure NFL
Theorem

New Choosing Procedure Theorem

CP decides which algorithm, a or d’, to use on the
(N+1)th algorithm run (test run) on f
Starting value chosen uniformly at random

Must be new starting value

Xn4q Not in {x;,..., x5}



Result 1: New NFL Theorem

Fixed samples, arbitrary new starting point, arbitrary fixed
function, A and B are any two CP’s

Sum over all algorithm pairs consistent with samples

Probability of obtaining a particular histogram is independent of

CP

Performance (function of histogram) is independent of CP

On average, performance of any two CP’s is equivalent



Sketch of Proof

Concerned with P(csn.n|.. )

Probability of a particular histogram of cost values on
the (N+1)th run (test run)

Starting value on test run, x,; , not in {x;,...,x\}

What algorithms do on test run is independent of the
training runs

Both algorithms are free to visit any possible sequence
of m values beginning with x, ;



Sketch of Proof

Both summations sum over the same set of
possibilities for c-,,.n
Can be viewed as a change of variables

Sum of probabilities is independent of the particular
choosing procedure
Sum of probabilities for choosing procedure A equals sum of

probabilities for choosing procedure B

Z P(Eﬁiz:-ﬁ1-_-"'~"|f: LN41, dl : d?-. sy II-rl]'[_-""."_'. dfl dfz R di"\-’? m, a, af.'- ‘4)



Corollary

Eﬂ.a’__x_.\-'_1 [‘I’(E‘:;,m,_,ﬂ-.;:l|f, LNy, dl . dg? “aa g {E,“',.T. {f " O” g e uy d,a.,.:. m, a, (lf. 44]
— Ea.,ﬂ’,:r:,-x-'+1 [(I)(E}-m-_wﬂf, ;1!_.«,-'_1._{31,(1}-;:3; dm, dr d; Ejah m, a, f_’i B]

For any fixed training data, the expected
performance—over choice of starting point and
algorithms—of any two choosing procedures is
equivalent



What Is Inferred from Theorem

Wolpert and Macready

Barring assumptions about the optimization algorithms
and /or f

No theoretical justification for using any particular choosing
procedure

On average, no choosing procedure is any better than a
random choosing procedure

We will show that this is not necessarily the case



A Superior Choosing Procedure

Result 2

Show that despite this theorem, there exists (at least)
one choosing procedure that, on average, is better than
random



A Superior Choosing Procedure

This choosing procedure makes its choice as follows
If one algorithm outperforms the other on all algorithm
runs in the training set

Choose this algorithm
Otherwise

Randomly choose between the algorithms

Each algorithm is chosen with probability 2

Call this the unanimous choosing procedure (UCP)

Only makes choice when unanimous support for one of
the algorithms



Why the Procedure Is Superior

If one algorithm consistently beats the other for all
N runs in the training sets

Using standard probability theory

Probability that UCP “fooled” into thinking this algorithm is
better becomes exponentially small as N grows

To get fooled

One algorithm wins on all runs in the training set

More often than not this algorithm will lose on a test run



Why the Procedure Is Superior

If choose a large enough (yet reasonable) value for
the number of training runs N

Probability that the UCP is fooled in such a way is
extremely small, perhaps around 2-128

Rational to believe or safe to assume that UCP won't be
fooled

If not fooled into making bad decisions

Good performance not necessarily offset by bad
performance

Average performance is better than random



Cryptographic Practice and Rationality

Basis of using 2128 as an appropriately small
probability
National Security Agency (NSA) uses encryption
algorithm AES-128

Encrypt classified documents

Uses 128-bit keys

Relies on probability of 2-128 that random guess will be able
to decrypt document



Cryptographic Practice and Rationality

How small is 2-1282

Even if
Same key used to encrypt every classified document
A billion documents encrypted per second for a billion years
Systematically guess and check distinct keys

Probability of any guesses succeeding is less than 1 in
10 trillion [JacTam]

Rational to believe or safe to assume

Real-world events with extremely small probability of
occurring will not occur, even though mathematically we
cannot rule out their possibility [JacTam]



A Sufficient Training Set

How many training runs is sufficient?
Enough so that the prediction error of the UCP is less than /2

Prediction error

Probability that the chosen algorithm will perform worse on
a test run

Why prediction error less than /22

When a random choosing procedure selects an algorithm

With probability V2 this choice is correct
Chosen algorithm will perform better on a test run

With probability V2 this choice is incorrect

The prediction error is /2




Prediction Error of UCP

Unanimous choosing procedure

One algorithm does not consistently beat the other
Randomly selects an algorithm

Prediction error is 12

One algorithm does consistently beat the other

If N is large enough

With extremely high probability, prediction error is less than 2
- ]_2-128

Averaged over unseen starting values, prediction error
is less than 2

Better than random



A Sufficient Training Set

Using probability theory

Can show that it’s overwhelming likely that a certain
classification error holds

Classification error

Probability over all possible starting values that the chosen

algorithm performs worse

Prediction error — probability over unseen starting values

Use classification error to calculate prediction error



A Sufficient Training Set

Can show that it is extremely likely that a particular
classification error holds
Fix this value to 0.24

Even if prediction error is double the classification error
Prediction error is 0.48 < /2

If number of training runs is less than 2| X| then prediction error
is at most double (because uniform choice of x)

Need to calculate N such that with extremely high
probability
Classification error is no more than 0.24

Prediction error is no more than 0.48



A Sufficient Training Set

If classification error is at least 0.24

On one training run

Probability over randomized choice of starting points that
the UCP does not pick losing algorithm is at most
1-0.24 =0.76

On N training runs

Probability over randomized choice of starting points that
the UCP fails to detect any losses is at most
(1 —0.24)N= (0.76)N



A Sufficient Training Set

On the test run of the algorithms

Probability that the UCP is “fooled” by the randomized
choice of starting values in the training set is at most

(0.76)N
Probability (0.76)Nthat fooled into choosing the
“worse” algorithm

Because no losses were detected during training runs



A Sufficient Training Set

To calculate sufficient training set

Set probability of being fooled, (0.76)", less than some
extraordinarily small value 4 > 0O

Solve for N
We will set the extraordinarily small value § to 27
Llet 0 = 128

This choice of 7 is from standard cryptographic
practice



A Sufficient Training Set

In order to find a sufficient training set size N such
that (0.76)N < o

Use the following formula from [Alguin88]
N> | Lin(d)]

€ is the classification error

Note that (0.76)N is just (1- €. )V, so € =0.24

For € =0.24 and o = 2?8, we have

{ifﬂ{%)—‘ — [Dédg”(g—llzaﬂ = 370




A Sufficient Training Set

When the UCP makes a choice (doesn’t randomly
choose)

Values of N greater than or equal to 370 are sufficient
fo
Produce an algorithm choice that with probability (1-2-128)
has

Classification error at most 0.24

Prediction error at most 0.48



Why UCP is Superior to Random

UCP either

Randomly chooses

Prediction error of 12

Makes a choice

Overwhelmingly likely /rational to believe /safe to assume
that prediction error is less than 2

On average, prediction error is less than 2

Better than random



Comparison

NFL theorem

Seems to imply expected prediction error is exactly /2
for all choosing procedures

We show

If believe claim regarding extremely small
probabilities
Perform enough training runs

Rational to believe or safe to assume the expected
prediction error of the UCP is less than 2

Implications of the NFL theorem are not as negative as
expected




Comparison to the St. Petersburg
Paradox

Similar paradox between mathematical
probabilities and rational beliefs

St. Petersburg Paradox
Gambling game
Flip fair coin until get “tails”
If “tails” comes up on
1+ flip 2 payout of $2
2" flip = payout of $4
k' flip =2 payout of $2k



Comparison to the St. Petersburg

Paradox
e

-1 Expected payout of game is arbitrarily large

o0
Expected pavout = Z (Payout on Ist "tails" on kth fip) - Pr[lst "tails" on kth fip]
k=1

— i Qk . 2—.!1:
k=1

o0

k=1
= 0O



Comparison to St. Petersburg Paradox

How much should someone be willing to pay to play
this game?

Most rational people would not even pay $25
[Hacking80]



Comparison to St. Petersburg Paradox

Paradox
Mathematically

Should be willing to pay arbitrarily large amount
Most rational people not willing to do this

Mathematics doesn’t always provide a good model of rational
real-world behavior

One reason paradox occurs

Extremely low probability events used to calculate expected
payout
Events such as

Flipping a coin 128 times before a “tails” comes up



Conclusion

Mathematically
Show an NFL result

On average, the performance of any two choosing procedures is
mathematically equivalent

Using probability theory and cryptography concepts

If rational to believe /safe to assume extraordinarily small
probability events won’t occur

There exists (at least) one CP—the UCP—that, on average, is
better than random

Although in strict mathematical sense NFL theorem holds

Implications are not as negative as expected



Future Work

Allow ties

Investigate appropriate cut-off for an allowable
percentage of ties

Analysis of not requiring one algorithm to always

win
Better if one algorithm wins on 75% of training runs?
51%:2

Combine with analysis of NFL theorems for learning
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