
A NO FREE LUNCH RESULT FOR OPTIMIZATION

AND ITS IMPLICATIONS

A Thesis

Submitted to the McAnulty College

and Graduate School of Liberal Arts

Duquesne University

In partial fulfillment of the requirements for

the degree of Master of Science in Computational Mathematics

By

Marisa B. Smith

August 2009

Copyright by

Marisa B. Smith

2009

A NO FREE LUNCH RESULT FOR OPTIMIZATION

AND ITS IMPLICATIONS

By

Marisa B. Smith

Approved May 5, 2009

APPROVED
Jeffrey Jackson, Ph.D., Professor of Computer Science
Department Chair
Department of Mathematics & Computer Science

APPROVED
John Kern, Ph.D., Associate Professor of Statistics
Department of Mathematics & Computer Science

APPROVED
Mark Mazur, Ph.D., Associate Professor of Mathematics
Graduate Director of Computational Mathematics
Department of Mathematics & Computer Science

APPROVED
Ralph L. Pearson, Ph.D.
Provost and Academic Vice President

iii

ABSTRACT

A NO FREE LUNCH RESULT FOR OPTIMIZATION

AND ITS IMPLICATIONS

By

Marisa B. Smith

August 2009

Thesis Supervised by Dr. Jeffrey Jackson

The No Free Lunch (NFL) theorems for optimization tell us that when

averaged over all possible optimization problems the performance of any two

optimization algorithms is statistically identical. This seems to imply that there are

no “general-purpose” optimization algorithms. That is, the NFL theorems show

that, mathematically, any superior performance of an optimization algorithm on one

set of problems is offset by inferior performance of that algorithm on the set of all

other problems. In this thesis we consider the seemingly negative implications of the

NFL theorems. We first extend a previous NFL theorem to get a new NFL result.

We then use ideas from probability theory and cryptography to show that if we

believe that extraordinarily small probability events will not happen, then there

exists (at least) one algorithm that is indeed a general-purpose algorithm. Thus, the

implications of the new NFL result are not as negative as expected.

iv

ACKNOWLEDGMENT

First of all, I would like to thank my thesis advisor, Dr. Jeffrey Jackson,

without whom I never would have been able to complete this work. The countless

hours of discussion we had made what is presented here possible, and I greatly

appreciate all of the time he was able to dedicate in helping me to complete this

thesis. I would also like to thank Dr. John Kern and Dr. Mark Mazur for being

readers. All of their feedback was extremely helpful in allowing me to reach my final

goal. Finally, I would like to thank my family for all of their support and patience,

and for understanding when I could not spend as much time with them as I would

have liked because I had to do my “homework.”

v

Table of Contents

Abstract . iv

Acknowledgment . v

1 Introduction 1

1.1 Background on No Free Lunch Theorems 2

1.1.1 Some Intuition on Why the NFL Theorems Hold 3

1.1.2 A Particular NFL Theorem of Interest 4

1.2 Objective of the Present Study . 5

2 NFL Theorems for Optimization 7

2.1 Preliminaries . 7

2.2 Choosing Procedure NFL Theorem 9

2.2.1 Definitions . 9

2.2.2 Statement of Theorem . 10

3 Extending the Choosing Procedure NFL Theorem 12

3.1 Description of Scenario . 12

3.2 New NFL Result . 13

3.2.1 Additional Definitions . 13

3.2.2 Theorem and Proof . 14

4 A Superior Choosing Procedure 23

vi

4.1 Description of Choosing Procedure 24

4.2 Why the Procedure Is Superior . 24

4.2.1 Prediction Error of a Choosing Procedure 25

4.2.2 A Sufficient Training Set . 26

4.2.3 From Classification to Prediction Error 28

4.2.4 A General-Purpose Choosing Procedure 29

4.2.5 The Unanimous Choosing Procedure 30

4.2.6 Choosing Procedures and Rationality 31

4.2.7 Cryptographic Practice and Rationality 32

4.2.8 A Trustworthy Choosing Procedure 34

4.2.9 Scenario in Which One Algorithm Is Consistently Better . . . 36

4.2.10 A Caveat . 37

4.3 Comparison to Work on the St. Petersburg Paradox 38

5 Discussion 40

5.1 Conclusion . 40

5.2 Future Work . 40

References 42

vii

Chapter 1

Introduction

The purpose of optimization is to find the “best” solution to a particular

problem. One commonly studied branch of optimization is combinatorial

optimization. In combinatorial optimization one deals with functions (problems) in

which a finite search space X maps to a finite space of cost values Y . That is, a

function f is defined as f : X 7→ Y , and the goal is to maximize (or minimize) f(x)

for x ∈ X [1]. An optimization algorithm is then some method of choosing x’s in X

in order to meet this goal. That is, it is some method of choosing x’s such that f(x)

is as large (or small) as possible for a given f .

For this paper, the performance of optimization algorithms is studied. In

particular, we are interested in whether there exist any “general-purpose”

optimization algorithms. That is, do there exist any algorithms that never do worse

than random guessing, and will do better on certain problems? The “no free lunch”

(NFL) theorems seem to imply that the answer is no. These theorems tell us that,

mathematically, if we average performance of any optimization algorithm over all

possible functions, its performance is the same as every other optimization

algorithm. So instances in which an algorithm does better than random are

necessarily offset by instances in which it does worse than random (so, on average,

1

performance is the same as random guessing). From this, Wolpert and Macready

infer that there are no general-purpose optimization algorithms [2]. In this paper,

we give reason to question this inference.

1.1 Background on No Free Lunch Theorems

As mentioned previously, the “no free lunch” (NFL) theorems for

optimization are a collection of theorems that say, roughly speaking, that when

averaged over all possible problems, the performance of any pair of optimization

algorithms is statistically equivalent [2]. In other words, if one algorithm performs

better than another algorithm on one set of problems, this superior performance is

necessarily offset by inferior performance on the set of all other problems. Because

we are averaging over all possible functions, on average, the performance of the

algorithms is the same. That is, there is “no free lunch.”

The NFL theorems state that the average performance of “any pair” of

algorithms is identical, and since any pair of algorithms could include one that

randomly chooses the next point to explore in its optimization process, an

alternative way to state the NFL theorems is to say that, on average, the

performance of any optimization algorithm is no better (or worse) than random

guessing. Thus, according to the NFL theorems, when trying to find the maximum

of a function, random guessing will perform just as well on average as hill-climbing,

an algorithm which at each step examines a set of neighboring points and moves to

the one having the highest cost value (and perhaps if it becomes stuck in a local

maximum, randomly chooses a new point [3]).

Therefore, contrary to what one might expect, an algorithm such as

hill-climbing, which makes informed decisions at each step, performs, on average, no

better than an algorithm that randomly chooses its next point. In fact, perhaps

2

even more counterintuitively, the NFL theorems tell us that, on average,

hill-descending, which at each step moves to the neighboring point with the lowest

cost value, performs just as well as hill-climbing when trying to find the maximum.

Although this runs counter to the fact that, in practice, hill-climbing is widely

preferred to hill-descending or random guessing if trying to find the maximum, in a

strict mathematical sense they are equivalent. The reason for this, as mentioned

earlier, is that the averaging is computed over all possible functions.

1.1.1 Some Intuition on Why the NFL Theorems Hold

To get a better understanding of why this is true, consider the following. An

optimization algorithm takes some sequence of steps to find the maximum of a

function. In particular, at each step an optimization algorithm has some fixed

method of choosing an x given a history of (x, y) pairs. However, because we are

considering all possible functions, the next x chosen could have any of the possible

y-values, regardless of how x is chosen (i.e., regardless of the algorithm). So

although for one particular function an algorithm might see a sequence of (x, y)

pairs that leads to “good values” (larger y-values), this same sequence is present in

some other function that will lead to “bad values” (smaller y-values). In fact, there

are other functions that will lead to all values in between. That is, after seeing some

initial sequence of (x, y) pairs, the next steps that an algorithm takes could lead

anywhere if all possible functions are considered. Since this is true regardless of the

algorithm, it is true of all algorithms. Thus, when one is considering all functions,

algorithm performance is the same, on average.

An alternative point of view is to picture each function as having a particular

terrain. While running an optimization algorithm on a particular function, each step

reveals more and more of the terrain. However, seeing part of the terrain tells one

nothing about the rest of the terrain if all terrains are possible (i.e., if all functions

3

are possible). For example, the part of the terrain one has seen so far might be very

smooth and level, but the rest of the terrain is just as likely to be completely

random as it is to continue to be smooth and level when one is considering all

possible functions. Thus, averaged across all possible terrains (functions), algorithm

performance is the same.

These examples of why the NFL theorems hold are merely to provide some

intuition. Section 3.2.2 contains a formal NFL theorem and proof.

1.1.2 A Particular NFL Theorem of Interest

There are a number of NFL theorems for optimization, each pertaining to

different algorithm types (e.g., deterministic or stochastic) and performance

measures. One theorem of particular interest for this paper involves what are called

choosing procedures. A choosing procedure can be thought of as a meta-algorithm

that examines the performance of two optimization algorithms after running each a

certain number of steps on an optimization problem, and based on these runs,

chooses which of the two algorithms will be used for the remainder of the problem.

Somewhat more formally, the scenario for this NFL theorem is as follows: (1) two

optimization algorithms, a and a′, are each run m steps on a particular problem;

and (2) based on the performance of the two algorithms on these first m steps, a

choosing procedure selects which of the two algorithms to use to continue the search

(on unseen data). For this theorem, rather than averaging performance across all

problems and saying that all algorithms are equivalent, we are instead averaging

across all pairs of algorithms and saying that all choosing procedures are equivalent.

Regardless, there is still “no free lunch,” that is, mathematically, any increased

performance of a choosing procedure on one pair of algorithms is offset by reduced

performance on the remaining algorithm pairs. Similar to the theorems that seem to

imply that there are no general-purpose optimization algorithms, this theorem

4

seems to imply that there are no general-purpose choosing procedures.

1.2 Objective of the Present Study

The first result of this thesis is the proof of an NFL theorem that is an

extension of the choosing procedure situation described above. In particular, in the

original choosing procedure NFL theorem, a pair of algorithms are run a given

number of steps and based on performance on these initial steps a choosing

procedure selects an algorithm. For our new NFL result, a pair of algorithms are run

multiple times, each time with a new common starting x-value (we will call each run

a training run), and then an algorithm is selected. Also, for the original theorem,

once an algorithm is selected, performance is measured based on a continuation of

the algorithm run. For the new theorem, once an algorithm is selected, performance

is measured on a new algorithm run, starting from a new, previously unseen, starting

value (we will call this the test run). Using techniques from the proof in [2] of the

original choosing procedure situation (where each algorithm is run once), it will be

shown that for this new setting, where a set of training runs are performed, any two

choosing procedures are (still) mathematically equivalent. That is, when averaged

over all possible pairs of optimization algorithms any two choosing procedures are

equivalent in terms of the performance of their chosen algorithm on test runs.

The second result of this thesis will use a fundamental assumption of modern

cryptography to show that despite the new NFL result, there exists (at least) one

choosing procedure that is indeed better than another, in particular, better than

random guessing. More specifically, we will show that for this “better” choosing

procedure, when one of the optimization algorithms consistently outperforms the

other on sufficiently many training runs, then it is extremely unlikely that the

procedure will be “fooled” into selecting this algorithm when it is actually worse

5

than the other algorithm. That is, it is extremely unlikely that one algorithm will

always perform better on many training runs but will more often than not perform

worse on a new algorithm run. We will then show that with a reasonable number of

training runs, the probability that the choosing procedure is fooled in such a way

can be made so small that it is rational to always trust the choosing procedure.

This then leads to our claim that our choosing procedure is better than a choosing

procedure that randomly selects an algorithm. This is because the choosing

procedure will not be fooled into making bad decisions, thus good performance will

not be necessarily offset by bad performance. This then means that overall the

procedure’s average performance is better than random and hence it is a

general-purpose choosing procedure.

Finally, this thesis discusses the implications of the results and how it is

possible for both to hold. In particular, the results will be related to the well-known

probability and decision theory problem, the St. Petersburg paradox, which

similarly leads to two conflicting points of view. Also, relationships to current

practice in the field of cryptography will be discussed. In doing so, it will be shown

that although in a strict mathematical sense our new NFL theorem holds, the

real-world implications are not as negative as expected.

6

Chapter 2

NFL Theorems for Optimization

In order to get to our new NFL result, it is first necessary to discuss the

original NFL theorem from which it stems. Before doing this, we need to introduce

the necessary definitions and notation that will be used.

2.1 Preliminaries

The NFL theorems are concerned with combinatorial optimization. Thus,

the search space X and the space of possible cost values Y are finite (although

perhaps quite large). An optimization problem f is a mapping from X to Y ,

f : X 7→ Y , and the space of all possible problems is F = YX .

In establishing the NFL theorems, an oracle-based model of computation is

used. In this view, during the optimization process, a particular x ∈ X is given to

an “oracle” that then returns f(x) = y ∈ Y for the given optimization problem

f ∈ F . Performance is then evaluated based on the results produced from a certain

number of function evaluations (calls to the oracle).

When performing an optimization problem, the set of function evaluations is

called the sample. If m function evaluations are performed, then the sample is

denoted dm ≡ {(dxm(1), dym(1)), . . . , (dxm(m), dym(m))}, where dxm(i) is the ith

7

(time-ordered) search point in the sample and dym(i) is its corresponding cost value.

Also, dxm ≡ {dxm(1), . . . , dxm(m)} is the ordered set of m points in the search space

that have been explored, and dym ≡ {dym(1), . . . , dym(m)} is the associated set of cost

values. An important note here is that only distinct function evaluations are

counted in these sets. That is, revisits are not counted as evaluations. This is

because revisits complicate algorithm comparisons and can be easily avoided [2].

An optimization algorithm is a mapping from a previously visited (ordered)

set of points to a single new (previously unvisited) point in X . More formally,

a : d ∈ D 7→ {x|x /∈ dx}, where D ≡ ∪m≥0Dm is the set of all samples of arbitrary

size and Dm = (X × Y)m is the space of all samples of size m. Note that by the

definition above, an optimization algorithm is deterministic (although Wolpert and

Macready show in [2] that NFL results apply to stochastic algorithms as well).

As previously mentioned, we are using an oracle-based model of

computation. Thus, algorithm performance is measured by some function of dym, the

set of cost values after m iterations of the algorithm. A performance measure will be

indicated by Φ(dym) to reflect this relationship.

As an example, when trying to find the maximum of a function f , an

appropriate performance measure might be the largest cost value (y-value) in dym,

Φ(dym) : maxi{dym(i) : i = 1, 2, . . . ,m}. Another (perhaps better) way to evaluate

algorithm performance that considers all elements in dym, and does not “reward” an

algorithm that happens to stumble upon one lucky guess, is to use the histogram of

cost values. This histogram, denoted ~c, is defined as follows:

~c = (cY1 , cY2 , . . . , cY|Y|)

where cYi is the number of times the cost value Yi occurs in dym. Note that this

histogram (or vector) has one component for each possible y ∈ Y , thus there are a

8

total of |Y| components. We can then apply some function that maps ~c to a

“goodness” measure. That is, we apply some function that takes the histogram of

cost values ~c and outputs some sort of ranking of how good this histogram is. For

example, we could use Φ(~c) : ~c 7→ R where larger values in R indicate a better

ranking. We can then use this ranking as our performance measure. Note that this

is just one possibility for Φ(~c).

2.2 Choosing Procedure NFL Theorem

2.2.1 Definitions

The above definitions and notation are used to develop a framework for all of

the NFL theorems presented in [2]. However, a few additional definitions are

necessary that are specific to the choosing procedure NFL theorem introduced

earlier. An obvious addition is the need for the definition of a choosing procedure.

From [2]:

Definition 1 (Choosing Procedure - Wolpert and Macready). A choosing

procedure is a rule that examines the samples, d and d′, each of size m, which result

from running algorithms a and a′, respectively, m steps on some f ∈ F . Based on

these samples, the choosing procedure then decides which algorithm, a or a′, to use

on the subsequent part of the search of f .

Also, for this particular NFL theorem, because we are comparing the

choosing procedures, and not the algorithms, it is necessary to define a slightly

different measure of performance. Remember that for the choosing procedure NFL

theorem, we are saying that any two choosing procedures are equivalent. Thus, we

are interested in what happens after a choosing procedure makes its choice. That is,

9

if the goal is to find the maximum, did the choosing procedure make a “good”

decision and choose the algorithm that leads to larger cost values, or did the

choosing procedure make a “poor” decision and choose the algorithm that leads to

small cost values? The question of which choosing procedure made the better

decision (and chose the better algorithm) is answered by comparing where each of

the algorithms would explore after the initial m iterations. In other words, we are

interested in d>m, the samples of the function that come after using the choosing

algorithm. Thus, a performance measure of interest is Φ(~c>m), the rank (goodness)

of the histogram of cost values that comes after the initial m sample points (i.e.,

after the choosing procedure has made its choice).

2.2.2 Statement of Theorem

Now that we have all of the necessary framework in place, from [2], the NFL

theorem involving choosing procedures is as follows:

Theorem 1 (Choosing Procedure NFL Theorem - Wolpert and Macready). Let d

and d′ be two fixed samples of size m, that are generated when the algorithms a and

a′, respectively, are run on the (arbitrary) cost function f at hand. Let A and B be

two different choosing procedures. Let k be the number of elements in ~c>m. Then

∑
a,a′

P (~c>m|f, d, d′, k, a, a′, A) =
∑
a,a′

P (~c>m|f, d, d′, k, a, a′, B)

where the sum is over all algorithms a consistent with d and a′ consistent with d′

and P (~c>m| . . .) is the probability that a certain histogram ~c>m is produced for the

given parameters.

10

An immediate result of this theorem is that

Pa,a′(~c>m|f, d, d′, k, a, a′, A) = Pa,a′(~c>m|f, d, d′, k, a, a′, B).

That is, for fixed f , d, d′, and k, once a choosing procedure has made its choice, the

probability, over uniform random choice of a and a′ consistent with d and d′, of

seeing a particular histogram of y-values, ~c>m, is independent of the choosing

procedure. To see that this is the case, assuming that the choosing procedure is A,

notice that Pa,a′(~c>m|f, d, d′, k, a, a′, A) is just
∑

a,a′ P (~c>m|f, d, d′, k, a, a′, A) divided

by the number of (a, a′) pairs consistent with d and d′. Since the number of (a, a′)

pairs consistent with d and d′ does not depend on the choosing procedure, and we

showed in Theorem 1 that
∑

a,a′ P (~c>m|f, d, d′, k, a, a′, A) is independent of the

choosing procedure, then Pa,a′(~c>m|f, d, d′, k, a, a′, A) does not depend on the

choosing procedure either. Thus, when considering all algorithms a consistent with

d and a′ consistent with d′, the probability, over choice of a and a′ consistent with d

and d′, of seeing a certain set of y-values is unaffected by the particular choosing

procedure. Since the probability of ~c>m is unchanged by the particular choosing

procedure, the performance of the procedure Φ(~c>m) is also unchanged. Thus, the

performance of all choosing procedures is equivalent.

For a detailed proof of Theorem 1 see [2]. However, worthy of mention here is

that the proof relies on a certain restriction of where the algorithms can search after

the initial m iterations. In particular, once a choosing procedure is selected, the

chosen algorithm is not allowed to return to any points in d∪ ≡ dm ∪ d′m. More

accurately, it can return to these points, but as explained before, these points are

not counted. This may seem a strange restriction because, in essence, it prevents

one algorithm from visiting any of the points that the other algorithm has already

visited. As we will see, no such restriction is necessary in the new NFL result.

11

Chapter 3

Extending the Choosing Procedure

NFL Theorem

3.1 Description of Scenario

The new NFL result, presented in this paper, is an extension to the choosing

procedure theorem described in the previous chapter. The NFL theorem from [2]

involved choosing procedures that make their decisions based on performance on one

run each of a pair of optimization algorithms. Also, once a decision has been made,

performance is measured based on a continuation of one of the algorithm runs. For

the new NFL theorem, the choosing procedures instead choose based on

performance on multiple runs (a training set of runs) of a pair of algorithms, and

once a choice has been made, performance is measured on a new algorithm run,

starting from a new, before unseen, initial x-value.

Somewhat more formally, the choosing procedures examine the performance

of two algorithms, a and a′, on a set of N algorithm runs on some function f ∈ F ,

where the initial x-values for each run are chosen uniformly at random. Then, based

on this performance, a choosing procedure decides which algorithm, a or a′, to use

12

on a new algorithm run, with initial x-value again chosen uniformly at random,

however with the restriction that only a starting x-value not already seen before will

be accepted. As the following theorem and proof will show, given this setting, any

two choosing procedures are statistically equivalent.

3.2 New NFL Result

3.2.1 Additional Definitions

Before presenting our new result, we will first provide a slightly different

definition for a choosing procedure since we now are making a decision based on a

set of algorithm runs rather than on a single run. Also, we will explicitly include in

our definition the possibility that a choosing procedure is randomized. This allows

us to include a random choosing procedure in our subsequent analysis. The

definition for a choosing procedure is as follows:

Definition 2 (Choosing Procedure). A choosing procedure is a rule that examines

the samples, d1, d2, ..., dN and d′1, d
′
2, ..., d

′
N , each of size m, which result from

running algorithms a and a′, respectively, N times on some f ∈ F , where the initial

x-value for each run is chosen uniformly at random; call these values x1, x2, . . . , xN .

Based on these samples, the choosing procedure then decides which algorithm, a or

a′, to use on the (N + 1)th algorithm run on f , where the starting x-value, xN+1, for

this run is again chosen uniformly at random, but with the restriction that

xN+1 /∈ {x1, x2, . . . , xN}. The choosing procedure can also elect to ignore the samples

and randomly choose between a and a′, with some fixed probability γ of choosing a

and probability 1− γ of choosing a′.

Also, we need to refine our definition of an algorithm since we are now

13

randomly choosing its initial x-value. Recall that the previous definition of an

algorithm says that it chooses its own starting value: a : d ∈ D 7→ {x|x /∈ dx}, where

D ≡ ∪m≥0Dm is the set of all samples of arbitrary size and Dm = (X × Y)m is the

space of all samples of size m. That an algorithm chooses its starting value is

reflected in the fact that m can equal 0. For our new definition, we still want an

algorithm to be defined as a mapping from a set of visited points to a new,

previously unvisited, point. However, we need to reflect that we are choosing the

algorithm’s starting value. We can accomplish this by simply redefining D as

D ≡ ∪m≥1Dm, and leaving the definition of an algorithm as a : d ∈ D 7→ {x|x /∈ dx}.

3.2.2 Theorem and Proof

Now that an introduction to the scenario has been presented and we have

redefined a choosing procedure and an algorithm to fit this scenario, a formal

statement of the theorem and proof (which is an adaptation of Wolpert and

Macready’s proof of Theorem 1) are as follows:

Theorem 2 (New Choosing Procedure NFL Theorem). Let d1, d2, ..., dN and

d′1, d
′
2, ..., d

′
N be fixed samples, each of size m, that are generated when two

algorithms a and a′, respectively, are run N times on an (arbitrary) fixed function

f ∈ F , where the initial x-value for each run is drawn uniformly at random; call

these values x1, x2, . . . , xN . Let A and B be two different choosing procedures. Let

xN+1 be the starting value for the (N + 1)th algorithm run on f , where xN+1 is

again chosen uniformly at random, but with the restriction that

xN+1 /∈ {x1, x2, . . . , xN}. Let m also be the number of elements in ~c>m·N , where

~c>m·N is defined as the histogram of cost values that results after running the chosen

algorithm until it has visited m distinct points. Then

14

∑
a,a′

P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A)

=
∑
a,a′

P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, B)

where the sum is over all algorithms a consistent with d1, d2, ..., dN and a′ consistent

with d′1, d
′
2, ..., d

′
N .

Proof. Let proc represent A or B. For deterministic choosing procedures, for fixed

d1,d2, . . . , dN and d′1, d
′
2, . . . , d

′
N , proc’s choice of a or a′ is fixed. So, throughout the

summation, a choosing procedure consistently chooses a or consistently chooses a′

because it makes its choice based on d1, d2, . . . , dN and d′1, d
′
2, . . . , d

′
N , and not on the

particular algorithms at hand. This leaves us with two possible situations: 1. if proc

chooses a; or 2. if proc chooses a′.

If proc chooses a for our d1, d2, . . . , dN and d′1, d
′
2, . . . , d

′
N then we have

∑
a,a′

P (~c>m·N |f, xN+1,d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, proc)

=
∑
a′

(∑
a

P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a)

)
where a′ can be dropped from P (~c>m·N | . . .) because ~c>m·N is set by a if a is chosen,

and proc can be dropped because of its consistent choosing of a. Also, we can break

our original (single) summation into two because fixing an a′ and then an a gives

the same result as picking an (a, a′) pair since we are summing over all possible valid

combinations of a and a′ (i.e., all a and a′ consistent with the data).

If proc chooses a′ for our d1, d2, . . . , dN and d′1, d
′
2, . . . , d

′
N then we have

15

∑
a,a′

P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, proc)

=
∑
a

(∑
a′

P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a

′)
)

where a and proc can be dropped and the summation can be broken into two for

reasons analogous to above.

Starting with the inner summations on each of the right-hand sides, by the

definitions of ~c>m·N and xN+1, on the (N + 1)th runs of a and a′, neither algorithm

has seen a sample of length m with initial x-value xN+1. That is, neither algorithm

has seen the set of data that results when using the initial x-value xN+1 on their

algorithm. To see that this is the case, recall that the definition of an algorithm is a

mapping from a previously visited (ordered) set of points to a single new (previously

unvisited) point in X . So each step that an algorithm takes depends on the ordered

set of previous steps it has taken. Because we have never started a and a′ with an

initial x-value of xN+1, the algorithms are unconstrained. That is, the algorithms

are not forced into taking the same steps they previously took on one of the runs in

the training set. So, despite the fact that the algorithms have already been run N

times on f , what the algorithms do on the (N + 1)th run (i.e., the test run) is

independent of what they did the first N times (i.e., independent of the samples

d1, d2, . . . , dN and d′1, d
′
2, . . . , d

′
N that came from running the algorithms a and a′,

respectively, the first N times). Thus, both algorithms are free to visit any possible

sequence of m x-values beginning with xN+1. Therefore, the inner summations in

the above equations are equal because they both sum over the same set of

possibilities for ~c>m·N .

Because P (~c>m·N | . . . , a) has no dependence on a′ and P (~c>m·N | . . . , a′) has

no dependence on a, in order to show that the overall sums of the right-hand sides

16

of the equations are equal, we only need to show that each outer summation is

added up the same number of times. That is, the number of possible a’s and the

number of possible a′’s is the same. To see that this is true, notice that in our

summation we are implicitly summing over those a and a′ that could result in

d1, d2, . . . , dN and d′1, d
′
2, . . . , d

′
N respectively when run on f . Before the first runs of

the optimization algorithms on f , both a and a′ could come from the set of all

possible algorithms. Then, as each set of algorithm runs is performed, each set of

data points d1, d2, . . . , dN and d′1, d
′
2, . . . , d

′
N puts constraints on which algorithms a

and a′ could be. However, each set of points puts the same number and kind of

constraints on both a and a′. That is, each knocks out N (or some number less than

N if any of the xi for i = 1, 2, . . . , N are the same) sequences of m initial values. So

it does not matter what the data is, the same number of algorithms are taken out of

consideration as a possible algorithm at each step. Thus, after the N runs of the

optimization algorithm, the number of a’s consistent with d1, d2, . . . , dN and the

number of a′’s consistent with d′1, d
′
2, . . . , d

′
N is the same. Therefore, the number of

times that each outer summation is added is the same.

Thus, the overall sums are equal because for the inner summations a is

summed over a set of values and a′ is summed over (essentially) the same set, and

the number of summands is equal in both cases. Another way to view this is to

notice that we essentially have a change of variables, where although the order of

summation may be different, each sum involves the same set of possible x values,

which in turn will result in the same set of probability values, P (~c>m·N | . . .), being

added. And again, because the number of outer summations is the same, this set of

probability values is being added the same number of times. Thus, regardless of

what proc does, the sums are the same.

Letting C equal the number of times the outer summation is summed, and

assuming, without loss of generality, that proc chooses a, we can rewrite our sum as

17

∑
a,a′

P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, proc)

= C ·
∑
a

P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a).

This sum is independent of proc, which in turn allows us to say that the sum

for choosing procedure A is equal to the sum for choosing procedure B, or more

precisely

∑
a,a′

P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A)

=
∑
a,a′

P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, B).�

Note that in the proof of this theorem choosing procedures A and B are

assumed to be deterministic. This is reflected in our claim that for fixed samples

d1,d2, . . . , dN and d′1, d
′
2, . . . , d

′
N a choosing procedure’s choice of a or a′ is fixed.

Since our definition of a choosing procedure also allows for a form of randomization

in which the samples are ignored and an algorithm is randomly selected, we need to

extend Theorem 2 with the following corollary.

Corollary 1. For randomized choosing procedures A and B, and for

~c>m·N , f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, and a′ as defined in Theorem 2,

∑
a,a′

P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A)

=
∑
a,a′

P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, B).

18

Proof. For a fixed setting of the parameters (f , d’s, d′’s, etc.), a randomized

choosing procedure R is going to choose a with some probability γ and a′ with some

probability (1− γ). So for a fixed a and a′, P (~c>m·N | . . . , R) is γ for the ~c>m·N

produced by a, (1− γ) for the ~c>m·N produced by a′, and 0 for all other histograms

~c>m·N . Let A be the procedure that always chooses a and let A′ be the procedure

that always chooses a′. Then summing P (~c>m·N | . . . , R) over all (a, a′) pairs, you get

γ times the sum of the probabilities P (~c>m·N | . . . , A) and (1− γ) times the sum of

the probabilities P (~c>m·N | . . . , A′). However, since A and A′ are deterministic, the

proof of Theorem 2 gives you that the sum of the probabilities P (~c>m·N | . . . , A)

equals the sum of the probabilities P (~c>m·N | . . . , A′). Therefore,

∑
a,a′

P (~c>m·N | . . . , R) = γ ·
∑
a,a′

P (~c>m·N | . . . , A) + (1− γ) ·
∑
a,a′

P (~c>m·N | . . . , A′)

= γ ·
∑
a,a′

P (~c>m·N | . . . , A) + (1− γ) ·
∑
a,a′

P (~c>m·N | . . . , A)

=
∑
a,a′

P (~c>m·N | . . . , A).�

Thus, Theorem 2 can be extended to show that there is still no free lunch for

randomized choosing procedures. An immediate result of this theorem (and

corollary) is that

Pa,a′(~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A)

= Pa,a′(~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, B).

That is, for fixed f , xN+1, d’s, d′’s, and m, the probability over uniform random

choice of a and a′ of seeing a particular histogram of y-values, ~c>m·N , is independent

of the choosing procedure. In other words, when considering all algorithms a

consistent with the d’s and a′ consistent with the d′’s, the probability, over uniform

19

choice of a and a′ consistent with the d’s and d′’s, of seeing any particular set of

y-values does not depend on the choosing procedure. Thus, when averaging across

all pairs of algorithms consistent with the data, all choosing procedures are

equivalent.

Theorem 2 leads to the following corollary:

Corollary 2. Given Theorem 2, the following holds:

Ea,a′,xN+1
[Φ(~c>m·N)|f, xN+1, d1, d2, . . . , dN , d

′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A]

= Ea,a′,xN+1
[Φ(~c>m·N)|f, xN+1, d1, d2, . . . , dN , d

′
1, d
′
2, . . . , d

′
N ,m, a, a

′, B]

where the expectation is over the uniform random choice of starting point xN+1 and

uniform random choice of a and a′ consistent with the training data, and A and B

are any two choosing procedures.

Proof. To see that this is true, assume A is the choosing procedure. For fixed

f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N , and m, the expected value, over all possible

(a, a′) pairs consistent with the data, of the goodness of a histogram, Φ(~c>m·N),

given we are using choosing procedure A, is just the sum, over all possible

histograms ~c>m·N , of the goodness of that histogram times the probability over a

and a′ of obtaining the histogram given A. That is,

Ea,a′ [Φ(~c>m·N)|f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A]

=
∑
~c>m·N

Φ(~c>m·N) · Pa,a′(~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A).

This probability, Pa,a′(~c>m·N | . . . , a, a′, A), is just the sum over a and a′ of

P (~c>m·N | . . . , a, a′, A) divided by the number of (a, a′) pairs consistent with

20

d1, d2, . . . , dN and d′1, d
′
2, . . . , d

′
N . We will use #(a, a′) to denote this number. Thus

we have

Ea,a′ [Φ(~c>m·N)|f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A]

=
∑
~c>m·N

Φ(~c>m·N) ·
∑

a,a′ P (~c>m·N |f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A)

#(a, a′)
.

In Theorem 2 we showed that
∑

a,a′ P (~c>m·N | . . . , a, a′, A) is independent of the

choosing procedure. Since no other terms involve A, the choosing procedure, we get

that Ea,a′ [Φ(~c>m·N)| . . . , a, a′, A] is also independent of the choosing procedure.

Thus we have

Ea,a′ [Φ(~c>m·N)|f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A]

= Ea,a′ [Φ(~c>m·N)|f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, B] .

To complete the proof, we need to take the expected value over xN+1 as well. By

definition of expected value, we have

Ea,a′,xN+1
[Φ(~c>m·N)|f, xN+1, d1, d2, . . . , dN , d

′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A]

=
∑
xN+1

Ea,a′ [Φ(~c>m·N)|f, xN+1, d1, d2, . . . , dN , d
′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A] · P (xN+1).

The only term which involves the choosing procedure A is

Ea,a′ [Φ(~c>m·N)| . . . , xN+1, a, a
′, A] which we have already shown is independent of

the choosing procedure. Thus

Ea,a′,xN+1
[Φ(~c>m·N)|f, xN+1, d1, d2, . . . , dN , d

′
1, d
′
2, . . . , d

′
N ,m, a, a

′, A]

= Ea,a′,xN+1
[Φ(~c>m·N)|f, xN+1, d1, d2, . . . , dN , d

′
1, d
′
2, . . . , d

′
N ,m, a, a

′, B] .�

21

This corollary says that for any fixed training data, the expected performance

of all choosing procedures is identical when averaged over all possible unseen starting

points and over all optimization algorithms consistent with the data. This would

seem to imply that no choosing procedure can have expected performance—over

choice of starting point and algorithms—better than a random choosing procedure.

Also, from this result, Wolpert and Macready would claim that regardless of

f , if we make no assumptions about how a and a′ are chosen, then we cannot be

sure that any particular choosing procedure will perform better than a random

choosing procedure when the test point is chosen at random from the set of unseen

starting points. This in turn implies that, barring assumptions about the

optimization algorithms and/or f , there is no theoretical justification for using any

particular choosing procedure. In the next chapter we will show that this is not

necessarily the case.

22

Chapter 4

A Superior Choosing Procedure

One of the conclusions that might be drawn from Theorem 2 is that there are

no “superior” choosing procedures. This is because this theorem tells us that,

mathematically, “good” performance is offset by “bad” performance, so on average

no choosing procedure is any better than any other choosing procedure. Put another

way, this result implies that no choosing procedure is superior to a procedure that

randomly selects an algorithm because instances in which a choosing procedure does

better than random are seemingly offset by instances in which it does worse than

random.

Using probability theory in conjunction with principles from standard

cryptographic practice we will show that instances in which a choosing procedure

does better than random do not necessarily have to be offset by instances in which it

does worse than random. More specifically, we will present an example of a choosing

procedure that, if provided with a sufficient (yet reasonable) number of training

runs, we should rationally believe performs at least as well as and sometimes better

than a random choosing procedure. That is, we should rationally believe that, on

average, the performance of this choosing procedure is superior to a random chooser

and thus it can be classified as a general-purpose choosing procedure.

23

4.1 Description of Choosing Procedure

This “superior” choosing procedure makes its choice as follows: if one of a

pair of algorithms outperforms the other on all algorithm runs in the training set,

then choose this algorithm; otherwise, randomly choose between the two algorithms,

where each algorithm is chosen with probability 1/2. We will refer to this choosing

procedure as the unanimous choosing procedure since it only really makes a decision

if one algorithm always outperforms the other one (i.e., when there is unanimous

support for one of the algorithms). In Section 4.2.5 a formal definition will be

provided.

4.2 Why the Procedure Is Superior

In order to show that the unanimous choosing procedure is superior we must

determine the “sufficient, yet reasonable” number of training runs that are necessary

to claim that the procedure will perform better than random choosing, on average.

First we will provide some intuition as to why a sufficiently large training set allows

us to make such a claim. The intuition is as follows. If one algorithm consistently

outperforms the other for all N runs in the training set, then, using standard

probability theory, we can show that the probability that the unanimous choosing

procedure will be fooled into thinking that this algorithm is better (when in reality

the other algorithm is better) becomes increasingly small as N grows. If we can say

that the probability that our choosing procedure is fooled in such a way is so

small—perhaps around 2−128 small—that we can rationally believe that it will not

happen, this allows us to say that our choosing procedure is better than random

guessing. This is because, on one set of possible test runs, when one algorithm does

not consistently outperform the other during the training runs, our choosing

procedure reduces to random guessing. On the other set of possible test runs, when

24

one algorithm consistently does better, then it is overwhelmingly likely, and thus

rational for us to believe, that on average the algorithm that it chooses performs

better on the test run. So, on one set of runs our choosing procedure does as well as

random, and on the other set we can rationally believe that it does better than

random. This allows us to say that, on average, our choosing procedure is better

that random guessing, or alternatively, that it is a general-purpose choosing

procedure.

4.2.1 Prediction Error of a Choosing Procedure

Using a somewhat more precise argument, notice that when a random

choosing procedure selects an algorithm, then with probability 1/2 this choice is

correct, that is, the chosen algorithm will perform better on the test run, and with

with probability 1/2 this choice is incorrect. Thus, we will say that a random

choosing procedure’s prediction error is 1/2.

For the unanimous choosing procedure, when one algorithm does not

consistently outperform the other, then it randomly selects an algorithm. From the

preceding discussion, we see that when this happens its prediction error is 1/2.

When one algorithm does consistently outperform the other and the number of

times that it does so is sufficiently large, then we can show that it is rational to

believe that the prediction error is less than 1/2. Thus, averaged over unseen

starting values, it is rational to believe that the prediction error of the unanimous

choosing procedure is less than 1/2.

The NFL result of Chapter 3 seems to imply that the expected prediction

error is exactly 1/2 for all choosing procedures. Thus, if we can show that it is

rational to believe that the expected prediction error of the unanimous choosing

procedure is less than 1/2, then we can say that the implications of the NFL

theorem are not as negative as expected.

25

4.2.2 A Sufficient Training Set

Now that we have some intuition on why a sufficiently large training set

allows us to claim that our choosing procedure is superior to random guessing, we

can start to pin down an an appropriate value for N . We can do this using standard

probability theory.

As previously discussed, when the unanimous choosing procedure selects an

algorithm (i.e., does not randomly choose) we need the prediction error to be less

than 1/2 in order to claim this procedure is better than random. That is, when the

procedure makes a choice, the probability over unseen starting values that the

chosen algorithm loses, or performs worse than the other algorithm, must be less

than 1/2. Using standard probability theory we can present a situation in which it

is overwhelmingly likely that a certain classification error εc holds, where

classification error is the probability over all possible starting values that the chosen

algorithm performs worse using the starting value. As we will show in Section 4.2.3,

we can then use this classification error to calculate the prediction error.

Since we can show it is extremely likely that a particular classification error

εc holds, let us fix this value to εc = 0.24. This way, even if the prediction error is

double the classification error we still have εp = 0.48 < 1
2
. As we will show in Section

4.2.3, if the number of training runs is less than 1
2
|X | this is a fitting assumption.

We can now begin to calculate a training set size N such that it is overwhelmingly

likely, and thus rational to believe, that the classification error is at most 0.24 (and

after some calculations, that the prediction error is at most 0.48).

This argument is as follows. If the probability is at least 0.24 that the chosen

algorithm loses (i.e., the classification error is at least 0.24), then on one training run

the probability that the unanimous choosing procedure does not pick the “losing”

algorithm, or alternatively, the probability that it fails to detect a loss is at most

1− 0.24 = 0.76. On N training runs, the probability that it fails to detect any losses

26

is at most (1− 0.24)N = (0.76)N . This is because training runs are independent, so

we can simply multiply the probabilities. Thus, on the (N + 1)th run or the test run

of the algorithms, the probability that the unanimous choosing procedure is “fooled”

by the randomized choice of starting values in the training set into thinking that one

algorithm is better 76% of the time (because it did not detect any losses during the

training runs) and thus is “fooled” into choosing this algorithm is at most (0.76)N . If

we set this value, (0.76)N , less than some extraordinarily small value δ > 0 and solve

for N , then it is extremely unlikely that the unanimous choosing procedure will be

fooled by the N training runs into choosing the algorithm that will perform worse

on the test run. In fact, in Section 4.2.6 we claim that if the probability that it is

fooled is less than δ, then it is rational for us to believe that it will never be fooled.

Thus, if we encounter a situation in which one algorithm consistently wins (for a

sufficient number of training runs), then it must be the case that we are not being

fooled but instead happen to have a “nice” function that is not completely random

or happen to have algorithms that can truly distinguish themselves which means

that we should trust the selection that the choosing procedures makes.

In order to solve for the sufficient training set size N such that it is

extremely unlikely that the unanimous choosing procedure is fooled into making an

incorrect choice, we will set the extraordinarily small value δ to 2−σ, where for the

time being and for concreteness we will use σ = 128. That is, we will use

δ = 2−σ = 2−128. As we will see in Section 4.2.7, the reason for choosing this as our

δ and in particular for choosing 128 as our σ is related to standard cryptographic

practice. For now we will just note that 2−128 is an extraordinarily small probability.

In order to find a sufficient training set size N such that (0.76)N < δ we can

use the following formula from [4]: N ≥
⌈

1
εc
ln(1

δ
)
⌉
. Note that (0.76)N is actually

just (1− εc)N , so εc = 0.24. To verify that this formula is correct and to see why

values of N that satisfy this inequality are appropriate, we use the fact that

27

(1− 1
n
)n < 1

e
for n > 0. If we substitute εc in for 1

n
and raise both sides to the power

ln(1
δ
) this becomes (1− εc)(1

εc
)(ln 1

δ
) < (1

e
)ln

1
δ = 1

1
δ

= δ. Thus, if we set N at least as

large as (1
εc

)(ln1
δ
), we get (1− εc)N < δ. So for εc = 0.24 and δ = 2−128, we have⌈

1
εc
ln(1

δ
)
⌉

=
⌈

1
0.24

ln(1
2−128)

⌉
= 370. Thus, when the unanimous choosing procedure

makes a choice, that is, does not randomly pick an algorithm, values of N greater

than or equal to 370 will allow us to produce an algorithm choice that with

probability (1− 2−128) will lose at most 24% of the time (i.e., have classification

error at most 0.24).

Notice that this says that the classification error is at most 0.24. That is,

0.24 is the probability, taken over all x ∈ X , that the unanimous choosing procedure

selects the losing algorithm when using starting value x. This means that x’s seen

during the training runs are used in the calculation of this probability. We are

interested in how the choosing procedure performs on xN+1 /∈ {x1, x2, . . . , xN}, or

how it performs on unseen x, so we are interested in the prediction error. In the

next section we will show how to use classification error to calculate prediction error.

4.2.3 From Classification to Prediction Error

We can calculate the prediction error from the classification error as follows.

If the classification error rate of the unanimous choosing procedure, when it selects

an algorithm, is 0.24, then it makes at most 0.24 · |X | errors on the entire space X .

If we have seen some fraction α of the possible starting x-values, then even if all of

the errors are on unseen starting values, the prediction error rate εp is at most

(number of errors)/(number of unseen inputs) = 0.24·|X |
(1−α)·|X | = 0.24

1−α . So we now have a

bound of 0.24
1−α on the prediction error rate.

In order to show that the overall prediction error rate of the unanimous

choosing procedure is less than 1/2, and thus better than what Theorem 2 would

seem to imply, we need the prediction error when a choice is made to be less than

28

1/2. Thus, we need to solve for α to determine the allowable fraction of seen

starting values such that this prediction error is less than 1/2. That is, we need to

solve 0.24
1−α <

1
2

for α. Doing this, we see that α must be less than 0.52, so in order to

ensure a prediction error of less than 1/2 we must limit the number of seen starting

values to approximately 1
2
|X |. Note that in practice it highly unlikely that we will

sample half of the search space because |X | is typically very large.

From these calculations it should now be clear why a classification error of

0.24 was chosen. This is because if we limit the number of seen inputs to 1/2 of the

search space, then the prediction error is 0.24
1−α = 0.24

1− 1
2

= 0.48 which is less than 1/2.

A classification error of even 0.25 would yield a prediction error of 0.5 which is not

less than 1/2 and thus would not allow us to claim that the unanimous choosing

procedure is better. Also, note that the prediction error we have calculated holds for

the same N and with the same probability that the classification error holds, that is,

it holds with probability 1− 2−128 for N = 370.

4.2.4 A General-Purpose Choosing Procedure

Throughout this paper we have alternately discussed our choosing procedure

as being better than random and as being a general-purpose choosing procedure.

We will now provide a formal definition for a general-purpose choosing procedure

which will more precisely describe what we mean by “general-purpose.” Also, from

this definition it should be clear that when we say a choosing procedure is a

general-purpose choosing procedure this means that it is better than a random

chooser.

Definition 3 (General-Purpose Choosing Procedure). A choosing procedure P is a

general-purpose choosing procedure if every time it is executed on some fixed

function f , the probability over unseen starting values U ≡ X − {x1, x2, . . . , xN} that

29

the algorithm selected by P performs worse than the algorithm that was not selected

is less than or equal to 1/2 and sometimes strictly less than 1/2. That is, its

prediction error εp is less than or equal to 1/2, and in some cases is strictly less

than 1/2.

Note that in this definition we are saying that there exist situations where εp

is strictly less than 1/2. In Section 4.2.9 we will provide one such situation. Also

note that from this definition it should be clear that a general-purpose choosing

procedure is better than random. This is because a random chooser always has

εp = 1/2; however, as we have already stated, there are instances in which a

general-purpose choosing procedure has εp < 1/2. Thus, the average prediction error

of a general-purpose choosing procedure will be less than 1/2, and thus better than

random guessing. Finally, we use the term “general-purpose” because every time the

procedure is executed the probability that the selected algorithm performs worse is

at most 1/2 (and sometimes less). So no matter when we use it, it will perform at

least as well as and sometimes better than random. Thus, we can consider it to be

“general-purpose.”

4.2.5 The Unanimous Choosing Procedure

Now that we have the necessary framework in place, we can finally give a

formal definition of the unanimous choosing procedure. This will then allow us to

formalize our argument that this procedure is better than random and is a

general-purpose choosing procedure.

Definition 4 (Unanimous Choosing Procedure). The unanimous choosing

procedure is a choosing procedure that runs the algorithms a and a′ on a sufficient

number of training set starting x-values, N , such that the probability over choice of

30

starting values S = {x1, x2, . . . , xN} that either a is correct on every xi or a′ is

correct on every xi and yet the procedure has classification error greater than 0.24 is

at most 2−σ. Once the sufficient number of training runs is performed, the procedure

then makes its choice as follows. If a is perfectly correct on S or a′ is perfectly

correct on S and N ≤ 1
2
|X |, it selects a or a′, respectively; otherwise it randomly

chooses between a and a′, where each algorithm has probability 1/2 of being chosen.

Note that in the above definition the choosing procedure will only make a

choice if one algorithm always wins and if it has seen at most 1/2 of all possible

initial x-values. This is indicated by the restriction of N to N ≤ 1
2
|X |. As

previously mentioned, given that the classification error εc is 0.24 we must limit the

fraction of seen inputs to 1/2 in order to ensure that the prediction error εp is at

most 2 · 0.24 = 0.48, which is less than 1/2.

4.2.6 Choosing Procedures and Rationality

Now that we have a more formal definition of the unanimous choosing

procedure, we can discuss why it is rational to always trust that its prediction error

is less than 1/2. Using terminology similar to [5], we define a class T C of

trustworthy choosing procedures as follows:

Definition 5 (Trustworthy Class of Choosing Procedures). A choosing procedure P

is in the class T C if for every execution of P (regardless of f, xN+1,m, a, a
′, N, d’s,

and d′’s), the probability, over uniform random choice of initial x-values from U ,

that the prediction error rate exceeds 1/2 is at most 2−σ.

As previously noted, based on standard cryptographic practice, we will use

σ = 128 in defining our sufficiently small probability. We now make the following

31

claim:

Claim 1. If choosing procedure P is in the class T C, then P is a general-purpose

choosing procedure. That is, every time P is executed its prediction error will be at

most 1/2 and for some problem parameters will be less than 1/2.

Thus we are claiming that δ = 2−σ = 2−128 is such an extraordinarily small

number that the prediction error of the choosing procedure will be at most 1/2.

That is, we are no longer saying that with probability (1− δ) the prediction error

rate will be at most 1/2, we are instead saying that we are convinced that the

prediction error rate will be at most 1/2. Thus, δ = 2−128 is such a small probability

that we can safely ignore it, or put another way, the probability that the procedure

is fooled by the randomized choice of starting values into choosing the wrong

algorithm is so small it should be ignored.

This leads to the following rational belief. If we believe Claim 1 (i.e., if we

believe that a probability of 2−128 is sufficiently small that it is negligible, which

cryptographic practice would lead us to believe), then we should trust that the

prediction error of the unanimous choosing procedure is at most 1/2 and sometimes

less.

4.2.7 Cryptographic Practice and Rationality

As mentioned several times previously, the basis of our using 2−128 as an

appropriately small probability comes from standard cryptographic practice. As

shown in [6] and [7], the current recommendation of the National Security Agency

(NSA) of the United States Government is to use the Advanced Encryption System

cryptographic algorithm with 128-bit keys (AES-128) to encrypt classified

documents. For our purposes, the details of how AES-128 works are unimportant.

32

What is important however is that the algorithm relies on the belief that the

probability is 2−128 that a single random guess of a key will decrypt an encrypted

document. As Jackson and Tamon mention in [5], even if the same key was used to

encrypt every classified document and a billion documents were encrypted per

second for a billion years, if we systematically guessed and checked distinct keys for

each document, the probability of any of these guesses succeeding would be less

than 1 in 10 trillion.

It is unlikely that the national government would go about encrypting

classified documents with AES-128 if they knew it was possible to “break” the

algorithm in any reasonable amount of time. Thus, it is implicit that the NSA and

hence cryptographic experts believe that it is rational to trust that any document

encrypted using AES-128 will not be broken by a limited number of guesses, even

though there is an extremely small probability that this could occur for any given

document. Or put another way, they feel that it is rational to believe that

real-world events that have an extraordinarily small probability of occurring will not

occur, even though mathematically we cannot rule out their possibility [5].

Before moving on, we note that in our definitions we used 2−σ rather that the

fixed value of 2−128. This allows us to adjust our sufficiently small probability to

changes in standard cryptographic practice. Thus, if 128 bits of security is no longer

considered sufficient to protect classified documents, then we can simply adjust σ to

be some larger value that is acceptable.

Now that we have shown how the extraordinarily small probability of 2−σ

was chosen, we assert that if it is rational to trust that the current cryptographic

standards used to encrypt classified documents are secure, then it is rational to

believe Claim 1. That is, if we believe that AES-128 will not be broken, then we

should believe that every time the unanimous choosing procedure is run the

prediction error will be at most 1/2 and in some cases less than 1/2.

33

4.2.8 A Trustworthy Choosing Procedure

Now that we have given some arguments for why Claim 1 should be

accepted, we will subsequently use it to show that there are indeed positive results

regarding the ability of the unanimous choosing procedure without the need for any

assumptions about what the function f , starting value xN+1, or algorithms a and a′

consistent with the data are. In particular, we will show that the unanimous

choosing procedure is in the class T C. Thus, we should trust that its prediction

error rate truly is less than or equal to 1/2 and sometimes strictly less than 1/2.

Theorem 3. The unanimous choosing procedure is in T C.

Proof. By its definition the unanimous choosing procedure either randomly chooses

between a and a′, each with probability 1/2, or it makes a choice of a or a′. When it

randomly chooses the prediction error rate is always 1/2. This is because, by

definition, the random choice has probability 1/2 of picking a and probability 1/2 of

picking a′. Thus, when a random choice is made (with probability 1) we have an

error rate of 1/2. When the choosing procedure makes a choice, that is selects a or

selects a′, then (by its definition) with probability at least 1− 2−σ the prediction

error is less than of equal to and some times strictly less than 1/2 . Thus, overall,

with probability at least 1− 2−σ, the unanimous choosing procedure’s prediction

error is at most 1/2 and sometimes less meaning it is in T C.�

This leads immediately to the following corollary:

Corollary 3. If Claim 1 is accepted, then the unanimous choosing procedure is a

general-purpose choosing procedure.

34

Before giving these results we stated that we make no assumptions about f ,

xN+1, or the algorithms a and a′ that the unanimous choosing procedure uses.

However, Corollary 2 in Section 3.2.2 tells us that if we make no assumptions about

what xN+1, a, and a′ are, then

Ea,a′,xN+1
[Φ(~c>m·N)| . . . , a, a′, A] = Ea,a′,xN+1

[Φ(~c>m·N)| . . . , a, a′, B] ,

where the expectations are over the uniform random choice of starting value xN+1

and algorithms a and a′ consistent with the training data, and A and B are any two

choosing procedures. Thus, the expected performance over uniform random choice

of xN+1, a, and a′ is independent of the choosing procedure. So the NFL result

seems to imply (and the pioneer of the NFL theorems David H. Wolpert would say)

that if we do not make some assumption about f , xN+1, a and a′, then no choosing

procedure is any better than a random chooser. That is, we must be making some

assumption about f or about how xN+1, a, and a′ are chosen—they cannot be

chosen uniformly—if we have a choosing procedure that does better than random

choosing.

However we are saying that our choosing procedure does better than random

choosing and we make no assumptions about the function f , the starting x-value

xN+1, or about the algorithms a and a′ that the unanimous choosing procedure uses.

That is, regardless of f and regardless of the xN+1, a, and a′ that we pick, the

unanimous choosing procedure does better than random choosing. Thus, despite the

seemingly negative implications of the NFL theorems, if we believe Claim 1, then

the actual ramifications are not quite so negative.

Note that we are not saying that the unanimous choosing procedure is

necessarily a “good” choosing procedure, we are just saying that it is better than a

random chooser. That is, its average prediction error is better than 1/2. This is

35

because if we ever have the case that one algorithm always outperforms the other,

then it is rational to believe that the unanimous choosing procedure will pick the

algorithm that performs better, on average, on test runs (i.e., it will choose the

correct algorithm). So on one set of possible runs, when the unanimous choosing

procedure actually picks an algorithm, the prediction error is at most 1/2 (and

sometimes strictly less than 1/2), and on the other set of possible runs, when it

randomly chooses an algorithm, its prediction error is exactly 1/2. So, on average,

the prediction error of the unanimous choosing procedure is better than 1/2.

Thus, despite the NFL result proven in Section 3.2.2 which tells us that, on

average, the prediction error of a choosing procedure is 1/2, if we believe Claim 1,

then we can show that there does exist (at least) one choosing procedure (i.e., the

unanimous choosing procedure) such that, on average, its prediction error is better

than 1/2. Therefore, the implications of the NFL theorems are not as negative as

expected.

Note that this statement relies on our belief in Claim 1, which we already

argued in support of in Sections 4.2.6 and 4.2.7. It also relies on the fact that it is

possible that one algorithm could always outperform the other algorithm. Thus at

some point we could have a prediction error of less than 1/2 which means that the

average prediction error is also less than 1/2. We will now show one possible

scenario in which one algorithm would always outperform the other algorithm.

4.2.9 Scenario in Which One Algorithm Is Consistently

Better

One possible situation where one algorithm would always outperform the

other is as follows. Recall that Φ(~c>m·N) is our performance measure. One possible

Φ that would give non-trivial results (i.e., the unanimous choosing procedure would

make a choice) would be one that looks at the final y-value of a training run and

36

outputs 1 if this value is above a certain threshold and 0 otherwise. If used in

conjunction with a convex function f (or a “bowl terrain”) which takes on integer

values from, say, 0 to 100, then our threshold might be something like 50. If

algorithm a is some kind of hill-climber and algorithm a′ is some kind of

hill-descender, and assuming neighboring points in f differ in their y-value by at

most 1, and assuming that every point except those at the bottom and top of the

“bowl” have higher and lower neighbors, then if we run both algorithms for, say, 51

steps, then Φ will produce values of 1 for the histograms of a and it will produce

values of 0 for the histograms of a′.

This shows that it is not unreasonable to believe that one algorithm could

outperform the other algorithm on all N training runs. Thus, there are situations in

which the unanimous choosing procedure will actually make a choice, and our

previous claims are not merely vacuously true.

4.2.10 A Caveat

One possible caveat in showing that it is rational to believe that the

unanimous choosing procedure is better than random is that our chosen extremely

small probability δ = 2−σ = 2−128 may not be small enough in certain situations.

For example, if we use choosing procedures to pick between algorithms 2128 times,

then it is very likely that during one of these uses a choosing procedure was fooled.

This means that a probability of 2−128 will not be sufficient. Thus, the rate at which

choosing procedures are used as compared to our chosen extremely small probability

has a very important effect on whether this probability is “small enough.”

Note however that we left open the possibility that the σ we use could be

larger than 128. In fact, increasing σ by 1 means the rate at which choosing

procedures are run would have to double in order for 2−σ to again not be small

enough. As it is, it is probably safe to say that choosing procedures are not run at

37

such a high rate that we should worry about our probability not being sufficiently

small. If this were a concern though we could increase σ to a large enough number

such that it is no longer a concern. Also, this potential problem is not unique to

running choosing procedures. The same problem would occur in cryptography if

decryption algorithms were run at an extremely high rate. Decryption algorithms

are almost certainly run more often than choosing procedures, so if it is found that

128 bits of security is no longer sufficient in cryptography, then we can simply

change our σ to an appropriately large value (that is sufficient for cryptographic

security) as necessary.

4.3 Comparison to Work on the St. Petersburg

Paradox

The apparent paradox that the results of this paper make is not a novel

discovery. In fact, there is a similar paradox between mathematical probabilities and

rational beliefs in a centuries old problem called the St. Petersburg paradox.

The St. Petersburg paradox comes about from a gambling game in which a

fair coin is flipped until it comes up tails (see [8]). If a tail comes up on the first flip,

there is a payout of $2. If a tail does not come up until the second flip, then there is

a payout $4. And in general if a tail does not come up until the kth flip, then there

is a payout of $2k. Thus, it is easily shown (see, e.g., [5]) that the expected payout

of the game is arbitrarily large. Note that one possible reason this paradox occurs is

because extremely low probability events, such as flipping a coin 128 times before a

tail comes up, are used in calculating the expected payout.

With this arbitrarily large (in fact, infinite) expected payout, the question is

then, how much should someone be willing to pay to play this game? According to

[9], few people would pay even $25 to play this game. That is, even though standard

38

probability theory tells us that any finite amount of money is an appropriate

amount to pay, most rational people would not even pay $25. Thus, standard

probability theory does not always provide a good model of rational real-world

behavior [5]. This is similar to our paradox in which standard probability theory

tells us to infer from the NFL theorems for optimization that general-purpose

choosing procedures do not exist; but if it is rational to believe that extraordinarily

small probability events will not happen, then we can show that it is possible to

“break out” of these negative results.

39

Chapter 5

Discussion

5.1 Conclusion

As we have already shown, standard cryptographic practice indicates that

extremely low probability events, such as decrypting a document encrypted using

AES-128 with a limited number of guesses, are thought to have such an

extraordinarily small chance of occurring that it is rational to believe that they will

not occur. If we believe that this is true, then we can show that there exists (at

least) one choosing procedure—the unanimous choosing procedure—that, on

average, is better than random choosing and hence is a general-purpose choosing

procedure. This is despite Theorem 2 which shows that, on average, the

performance of any two choosing procedures is mathematically equivalent. This

leads us to the conclusion that despite the seemingly negative results of our NFL

theorem, the implications are not as negative as expected.

5.2 Future Work

One of the limitations in showing that the unanimous choosing procedure is

superior to random guessing is that during the training runs one of the algorithms

40

always had to win in order for it to not randomly choose between the algorithms.

That is, even if an algorithm tied sometimes, but still never lost, this algorithm was

not chosen and instead an algorithm was randomly chosen. The reason for this is

that once ties are allowed, the analysis becomes more complex. That is, we probably

would not want to choose an algorithm if it won only once and then tied every other

time; however, we might want to choose it if it tied once and won every other time.

Thus some criteria for determining an appropriate cut-off for an allowable

percentage of ties should be investigated.

Another, somewhat related, limitation is that in order to find a superior

choosing procedure one of the algorithms always had to win. That is, the superior

choosing procedure had to be the unanimous choosing procedure. In the future,

some analysis of the implications of not requiring one algorithm to always win

should be explored. For example, should we trust that our choosing procedure is

better if it wins on 75% of the training runs? What about only 51%? Answers to

these questions will give us a better understanding of when we should trust that a

choosing procedure is correct in its decision.

Finally, similar to the NFL theorems for optimization, there are also NFL

theorems for machine learning which show that any two learning algorithms are

statistically equivalent (see [10]). Also, in [5], arguments analogous to those used in

this paper show that there exist several general-purpose learning algorithms. Thus,

the implications of the NFL theorems for machine learning are also not as negative

as expected. It may be beneficial to combine these analyses.

41

References

[1] E. H. L. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization.
Wiley-Interscience Series in Discrete Mathematics and Optimization. John
Wiley and Sons, Ltd., Chichester, England (UK), 1997.

[2] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[3] D. L. Smitley and I. Lee. Comparative analysis of hill climbing mapping
algorithms. Technical report, University of Pennsylvania Department of
Computer and Information Science Technical Report No. MS-CIS-88-94,
November 1988.

[4] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

[5] J. C. Jackson and C. Tamon. On the rationality of belief in free lunches in
learning. Unpublished manuscript-in-preparation.

[6] National Institute of Standards and Technology. FIPS PUB 197: Advanced
Encryption Standard (AES). National Institute for Standards and Technology,
Gaithersburg, MD, November 2001.

[7] Committee on National Security Systems. Fact sheet no. 1 for the national
policy on the use of the advanced encryption standard (aes) to protect national
security systems and national security information. Technical report, June 2003.

[8] D. Bernoulli. Exposition of a new theory on the measurement of risk.
Econometrica, 22(1):23–36, 1954.

[9] I. Hacking. Strange expectations. Philosophy of Science, 47(4):562–567, 1980.

[10] D. H. Wolpert. The lack of a priori distinctions between learning algorithms.
Neural Computation, 8(7):1341–1390, 1996.

42

