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Introduction

In “Learning with Errors in Answers to Membership Queries” it is shown that for any two
boolean functions f : {0,1}" — {0,1} and ¢ : {0,1}" — {0,1} and two sets of disjoint
variables = = (x1, ...z,,) and y = (y1, ...yn,) We have,

sizepcp(f(x) @ g(y)) < sizepcp(f(x)) - sizepcp(9(y)).

I would like to extend this to prove equality. I have made progress in doing so, but lack the
proof for one crucial step. This paper documents the progress I have made and describes
the problems that I have encountered in attempting to complete this proof.
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Definitions

. The number of conflicts between two terms is the number of variables occurring un-

negated in one term and negated in the other.

. A DNF is disjoint if any two of its terms have at least one conflict.

. Any two terms that have at least two conflicts can not be covered by a single term of

fewer variables.

. The minimal disjoint CDNF representation for the always false function is (0, 1), where

sizepep((0,1)) = 1.

. The minimal disjoint DNF representation for the always false function is 0, where

SiZﬁDDNF(O) =0.

. The minimal disjoint CDNF representation for the always true functionis (1, 0), where

SiZ@DCD«l, 0)) = 1.

. The minimal disjoint DNF representation for the always true functon is 1, where

SiZ@DDNF(l) =1.

. sizepop(f) = sizeppnr(f) + sizeppnr(f)

(fe=(AnV Ay =(AgVI(FAT)




3 Completed Progress
Remark 1 By definitions 5 and 6 we have,

sizepop (f © g) = sizeppwr ((f A §) V (f A 9)) + sizeppne((f A g) V (F A ).

Lemma 1 For any two boolean functions f : {0,1}"™ — {0,1} and g : {0,1}"* — {0,1} and
two sets of disjoint variables x = (1, ...Tn,) and y = (Y1, ...Yny ),

sizeppnr((f AG)V (f A g)) = sizeppnr(f A G) + sizeppnr(f A g).

Proof : First notice that for any two functions on disjoint variables we have,

FANG=(FADAVG=(FAGAAY)

and

So,

(FADVIAG= [FADATAD|V[(FADATAG| = (Frg) e (fAg).
I first show

sizeppnr((f AN G)V (A g)) < sizeppnr(f A §) + sizeppyr(f A g).

Let P and @ be a minimal disjoint DNF for (f Ag) and (f A g) of size s; and s, respectively.
Then PV @ is a disjoint DNF for ((f Ag) V (f Ag)) of size s1 + so.
I now show

SiZGDDNF((f N g) V (]F/\ g)) Z SiZGDDNF(f A\ g) -+ SiZ€DDNF(fA g)

Suppose sizeppyr((fAG)V (fANg)) < sizeppnr(f Ag) + sizeppnr(f Ag). Then, there
exists some term in the disjoint DNF for (f Ag)V (f Ag) that covers a portion of f A g and a
portion of f A g. Clearly, any such term must have less than n; 4 no literals, since any term
with n; + ngy literals must either be in f A g or in f A g, but not both. So consider a term
that covers a portion of both f A g and f A g that has less than n; + n, literals.

Case 1: All absent variables are from the domain of f. Then this term covers a portion
of f and of f. However, if no variables are removed from the domain of g, then this term
still only covers a portion of g or g, but not both.

Case 2: All absent variables are from the domain of g. Then this term covers a portion
of g and of g. However, if no variables are removed from the domain of f, then this term
still only covers a portion of f or f, but not both.

Case 3: Some variables are removed from the domain of f and from the domain of g.
Then some x; has been removed such that when the value of that variable changes, the value
of f changes. Also some y; has been removed such that when the value of that variable
changes, the value of ¢ changes. So this term covers assignments that satisfy fAgand fAg.
However, it also covers assignments that satisfy f A g and f A g. This is a contradiction,
because (f A g) V (f A g) is zero when either f A g is satisfied or when f A g is satisfied.

Therefore, sizeppnr((f AG)V (f A g)) > sizeppnr(f A g) + sizeppyr(f Ag). O



Lemma 2 For any minimal disjoint DNF T of size s, the expression obtained by deleting
any term from T is a minimal disjoint DNF' of size s — 1.

Proof : Let T'=1t; Vi, V... Vts and T’ be the expression obtained by deleting some t;
from T'. Clearly, T" = t; Vit V...Vt;_1 Vit 1 V... Vi, is a disjoint DNF of size at least s — 1.
Suppose sizeppyr(T’) < s — 1. Then there is some covering of all but one of the terms in
T of size less than s — 1. This, however, is a contradiction to the minimality of T". [

Fact 1 For any two boolean functions f : {0,1}" — {0,1} and g : {0,1}"> — {0,1} and
two sets of disjoint variables x = (x1,...x,,) and y = (y1,...Yn, ), there are

(27" —1)- (22" 1) +1
different boolean functions h : {0,1}™ "2 — {0, 1} where h is of the form f A g.

Proof : The number of functions on n; variables is 22**. Likewise, the number of functions
on ny variables is 22"*. Since f and g are on disjoint variables f(z1,...2n,) A g(Y1, . Yn,) =
h(x1, ... Ty, Y1, ---Yny ). By the product rule the number of functions A : {0,1}"*"2 — {0,1}
where h is of the form f A g is 22" - 22", However, one of the 22"' functions is the always
false function. Likewise, one of the 22 functions is the always false function. Since 0Ag = 0
and f A0 =0, 22" + 22" — 1 functions, h, will be the always false function. Therefore, the
number of different functions h : {0,1}"%"2 — {0, 1} where h is of the form f A g is

27 2¥ (27 422 )+ 1=(2"" - 1) (227 - 1)+ 1
O

Fact 2 For any two boolean functions f : {0,1}" — {0,1} and g : {0,1}"> — {0,1} and
two sets of disjoint variables x = (1, ...x,,) and y = (Y1, .--Yn,), if P is a minimal disjoint
DNEF for f(x) and Q is a minimal disjoint DNF for g(y), then no two terms in P N\ Q can
be covered by a single term of fewer variables.

Proof : Since any two terms in P have at least one conflict, any two terms in () have at
least one conflict, and P and () are on disjoint variables, any two terms in P A () have at
least two conflicts. Any two terms that have two conflcits can not be covered by a single
term of fewer variables. [

4 Future Work
In order to finish proving

sizepep(f(x) ® g(y)) = sizepep(f(x)) - sizepen(9(y))

it is necessary to show that for any two boolean functions f : {0,1}"* — {0,1} and g :
{0,1}™ — {0, 1} and two sets of disjoint variables x = (1, ...x,,) and y = (Y1, .--Yny ),

SizeDDNF(f A g) Z SiZ€DDNF(f> . SizeDDNF(g)' (1)
If this fact can be proven then it would imply that

sizeppnr((f ANG)V (f A g)) > sizeppnr(f) - sizeppnr(g) + sizeppnr(f) - sizeppnr(9),



which would then imply that

sizepop(f ® g) > sizeppnr(f) - sizeppyr(g) + sizeppnr(f) - sizeppnr(9)

+ sizeppnr(f) - sizeppnr(g) + sizeppnr(f) - sizeppnr(9)

= (sizeppnr(f) + sizeppnr(f)) - (sizeppnr(g) + sizeppnr(G))

= sizepep(f) - sizepep(g)

I have not, however, been able to prove (1). I attempted to prove this by induction on
n = ny + ny. The base case is simple. For n=0 we have (n;,ns) = (0,0) The only functions
on zero variables are the always true or always false function. If f A g = 0 then either f =0
or g =0, and clearly sizeppnr(0) =0 > sizeppyr(0) - sizeppyr(g) = 0- sizeppnr(g) = 0.
If fAg=1then f=g=1, and clearly sizeppyr(1) =1 > sizeppnr(1) - sizeppyr(1) =
1-1 = 1. Then the inductive hypothesis is for a boolean function f A g : {0,1}* — {0, 1},
where k is an arbitrary number of variables, sizeppyr(f Ag) > sizeppyr(f) - sizeppyr(g)-
I have not, however, been able to find a way to use this hypothesis to prove the case for
fAg:{0, 1}k — 10,1}

I have also attempted to prove (1) by double induction on (n;,n3). Again the base cases
are simple, and we get the additional facts that Vns((0,12) — (0,n2+ 1)) and Vny((n4,0) —
(n1+1,0)). Again the problem is that I have not found a way to use the inductive hypothesis
to prove the inductive step.

I believe my most hopeful attempt to prove (1) was by double induction on (s1, $3), where
sizeppnr(f) = s1 and sizeppyr(g) = so. Following is an outline of my progress for this
proof.

Vs1Vsy, if sizeppnr(f) = s1 and sizeppnr(g) = So, then sizeppyr(f Ag) = s1 - Sa.
e Base case Vss, if sizeppyr(f) = 0 and sizeppnr(g) = S2, then sizeppyr(fAg) = 0-ss.

- If sizeppyr(f) = 0, then f is the always false function. For any function g,
0Ag=0,so sizeppyr(0A g) =0.

e Inductive Hypothesis Vsy, if sizeppyr(f) = m and sizeppyr(g) = S2, then sizeppyr(fA

g) =m- Ss.

e Inductive Step Vss, if sizeppyr = m + 1 and sizeppnp(g) = S2, then sizeppyr(f A
g)=(m+1)- ss.

e Base Case If sizeppyr = m + 1 and sizeppnr(g) = 0, then sizeppnr(f A g) =
(m+1)-0.

- If sizeppyr(g) = 0, then g is the always false function. For any function f,
fA0=0,so sizeppnr(f A0) =0.



e Inductive Hypothesis If sizeppyrp(f) = m + 1 and sizeppnr(g) = n, then
sizeppnr(fAg) = (m+1) - n.

? Inductive Step If sizeppyr = m+1 and sizeppyr(g) = n+1, then sizeppyr(fA
g =m+1)-(n+1).

Intuitively, this last inductive step seems possible to prove. Let P = p;Vpa V... VP, be a
minimal disjoint DNF for f and Q = ¢1 V¢ V.. .Vg,.1 be a minimal disjoint DNF for g. Then,

PAQ = \/f:{l ?ill (piNg;) = [ :rjl Vi_i(pi A qj)] V [\/?:{1(]3Z A qn+1)]. By the inductive

hypothesis, we know that \/7"*! Vi1 (piAg;) is a minimal disjoint DNF of size (m+1)-n for

fAg,ifsizeppyr(f) = m+1and sizeppyr(g) = n. It is also clear that \/Z."El(pi/\qnﬂ) is a

minimal disjoint DNF of size m+ 1 for f A g, if sizeppyr(f) = m+1 and sizeppnr(g) = 1.

However, it is unclear how to prove that [ ml Vi—(pi A qj)} % [\/;’Sl(pz A qn+1)} is a
minimal disjoint DNF for f A g, if sizeppyr(f) = m + 1 and sizeppyr(g) = n+ 1. In
lemma 2, I showed that for any minimal disjoint DNF T of size s, the expression obtained
by deleting any term from 7 is a minimal disjoint DNF of size s — 1. If something could
be said about the opposite direction, that is, if some conditions could be determined about
forming a minimal disjoint DNF of size s by adding a term to minimal disjoint DNF of size
s — 1, then I believe the inductive step could be proved.

The only way I have been able to prove (1) for any fixed n is by exhaustively considering
all functions on n variables. I have, in fact, done this for n = 1, 2,and 3.

I have also attempted to prove that for any two boolean functions f : {0,1}™ — {0,1}
and ¢ : {0,1}" — {0, 1} and two sets of disjoint variables © = (zy, ...z, ) and y = (y1, ...Yn, ),
if P is a minimal disjoint DNF for f(x) of size s; and @ is a minimal disjoint DNF for g(z)
of size s9, then P A () is minimal disjoint DNF for f A g of size s; - s5. Clearly, P A Q is a
disjoint DNF for f A g of size s; - s. Showing that P A @) is minimal, however, has proved
to be a difficult task. There really is no precise definition for a minimal representation of
a function other than its size is smaller than any other representation of the function. A
minimal representation is not unique, and there certainly are other minimal disjoint DNF
representations other than P A Q for f A g.

5 Conclusion

In my attempt to prove that for any two boolean functions f : {0,1}" — {0,1} and
g:{0,1}" — {0,1} and two sets of disjoint variables x = (x1,...x,,) and y = (Y1, --.Yn,),

sizepep(f(x) @ g(y)) = sizepep(f(x)) - sizepep(9(y))

I have only managed to show that

sizepop(f®g) = sizeppnr(f A G)+ SizeDDNF(f/\ g)+sizeppnr(fAg) —I—sizeDDNF(f/\ g)-

It remains to be shown that

sizeppnr(f A g) > sizeppnr(f) - sizeppnr(g)



holds for any two boolean functions on disjoint variables. I am thouroughly convinced that
this is true and that it can in fact be proven.



