Machine Learning, , 1-37 ()
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On Restricted-Focus-of-Attention Learnability of
Boolean Functions

ANDREAS BIRKENDORF birkendo@ls2.informatik.uni-dortmund.de
Universitdt Dortmund, Fachbereich Informatik, D-44221 Dortmund, Germany.

ELI DICHTERMAN eli@cdam.lse.ac.uk

Department of Mathematics, London School of Economics, Houghton Street, London WC2A
2AE, UK. And, Department of Computer Science, Royal Holloway University of London, Egham,
Surrey TW20 O0EX, UK.

JEFFREY JACKSON jackson@mathcs.duqg.edu

Math and Computer Science Department, Duquesne University, 600 Forbes Avenue, Pittsburgh,
PA 15282, USA.

NORBERT KLASNER klasner@Ils2.informatik.uni-dortmund.de
Universitdt Dortmund, Fachbereich Informatik, D-44221 Dortmund, Germany.

HANS ULRICH SIMON simon@]ls2.informatik.uni-dortmund.de
Universitdt Dortmund, Fachbereich Informatik, D-44221 Dortmund, Germany.

Received August 20, 1997; Revised August 20, 1997

Editor: Dana Ron

Abstract. In the k-Restricted-Focus-of-Attention (k-RFA) model, only k of the n attributes of
each example are revealed to the learner, although the set of visible attributes in each example
is determined by the learner. While the k-RFA model is a natural extension of the PAC model,
there are also significant differences. For example, it was previously known that learnability in
this model is not characterized by the VC-dimension and that many PAC learning algorithms are
not applicable in the k-RFA setting.

In this paper we further explore the relationship between the PAC and k-RFA models, with
several interesting results. First, we develop an information-theoretic characterization of k-RFA
learnability upon which we build a general tool for proving hardness results. We then apply
this and other new techniques for studying RFA learning to two particularly expressive function
classes, k-decision-lists (k-DL) and k-TOP, the class of thresholds of parity functions in which each
parity function takes at most k inputs. Among other results, we prove a hardness result for k-RFA
learnability of k-DL, k < n—2. In sharp contrast, an (n—1)-RFA algorithm for learning (n—1)-DL
is presented. Similarly, we prove that 1-DL is learnable if and only if at least half of the inputs are
visible in each instance. In addition, we show that there is a uniform-distribution k-RFA learning
algorithm for the class of k-DL. For k-TOP we show weak learnability by a k-RFA algorithm
(with efficient time and sample complexity for constant k) and strong uniform-distribution k-RFA
learnability of k-TOP with efficient sample complexity for constant k. Finally, by combining some
of our k-DL and k-TOP results, we show that, unlike the PAC model, weak learning does not
imply strong learning in the k-RFA model.

Keywords: Restricted Focus of Attention, PAC-Learning, Learning Algorithms, Boolean Func-
tion Classes, Decision Lists, Threshold of Parities, Fourier Transform
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1. Introduction

Learning theory has been mainly concerned with the problem of generalizing from
a sample of fully-specified classified examples. For this problem classical statistical
uniform convergence theorems have been used to characterize scenarios in which a
good generalization can be found with high confidence ([28]), specific bounds on
the sample size needed for such generalization have been proved [8], and efficient
learning algorithms have been designed for specific cases (cf. [27]).

It has also been noticed that in many realistic scenarios, the samples from which
the learner has to generalize are not fully specified [21, 22]. The learning models
which have been formulated for studying this type of problems usually assume—
sometimes implicitly [6]—that there is a fixed set of relevant variables which are
invisible to the learner. In such problems, the learner may only attempt to find a
good probabilistic prediction rule with respect to the visible attributes. However, as
observed by Ben-David and Dichterman [3], there are many cases in which there are
no attributes which are inherently invisible, but rather there are other restrictions
on the visibility of the attributes, such as the amount of visible attributes in each
single example. Since in such cases every attribute is potentially visible, the learner
may attempt to find more than just a probabilistic prediction rule; he may try to
formulate a full description of the concept with respect to all the relevant attributes.

Consider, for instance, medical research which aims at forming the exact pattern
of some disease. Typically, there is some a priori knowledge about the disease, such
as the potentially relevant attributes of the disease and the possible patterns of
the disease with respect to these attributes. Then, in the course of studying the
disease, it is usually possible to sample people from a given population and conduct
several tests on each one of them. However, due to practical considerations (e.g.,
the cost of the tests), or inherent restrictions (e.g., the fact that some blood tests
may be destructive, or may not be usable for more than a limited number of tests),
the amount of data that is available for each single person is limited.

In such circumstances, researchers face the following problem: They can choose a
set of attributes which can be tested on a given sample, and they may choose to test
different attributes on different samples. However, they cannot have the full relevant
medical record of each sampled person. What type of information can be extracted
from such partially-specified samples? Certainly, if the samples are large enough,
it is possible to estimate the probability of developing the disease, for each set of
attributes, and for every assignment to these attributes (assuming that it is known
whether each sampled person has developed the disease or not). Although such
estimates are useful in predicting whether a given subject will develop the disease,
forming an exact description of the disease with respect to all the relevant attributes
may be much more useful in understanding the disease and in finding ways of
treating it. This is the main theme of this paper—when and how a learner can
use a priori knowledge (i.e., the class of possible concepts) and partially-specified
samples to find with high confidence a good approximation of the target concept.
For instance, it is implied by the results shown in this paper that, in general, if it
is known that the disease may be described as a binary-valued decision list, then
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in order to find with high confidence a good approximation of the disease at least
half of the attributes have to be tested for each sampled person.

The problem of learning in such scenarios motivated the general restricted-focus-
of-attention learning model [3], in which the learner has no direct access to full
examples, but rather may observe each example in one of a limited number of
ways. In this work we consider a special type of restriction called k-RFA, in which
the learner may observe any set of k attributes of each example.

An interesting and useful feature of the RFA restriction is its relation to efficient
noise-tolerant learning. It follows from a result in [4] that an O(logn)-RFA oracle
can be efficiently simulated by statistical queries, and hence by Kearns’ transforma-
tion [19] an efficient O(log n)-RFA learner can tolerate classification noise (a simple
and direct proof of the noise-robustness of an O(log n)-RFA learner is shown in [5]).
Furthermore, it is shown in [11] that if each statistical query uses only a restricted
view (i.e., it depends on a logarithmic number of attributes), then the learner can
tolerate attribute noise as well. It follows that an O(log n)-RFA learner can tolerate
efficiently and simultaneously both attribute and classification noise. Hence, one
may view the RFA restriction as a useful conceptual tool in constructing efficient
noise-tolerant learning algorithms: Just make sure that the learning algorithm se-
lects no more than a logarithmic number of attributes to be seen in any given input
example. As demonstrated in [4], in many cases this is easily accomplished by a
slight variation of the well-known learning strategies.

While the k-RFA framework resembles the PAC model in many aspects, there
are also some interesting differences. For example, unlike the PAC model, k-RFA
learnability of a class is not characterized by its VC-dimension [3, 4]. We show in
this paper another surprising difference: Weak k-RFA learnability of a class does
not imply strong k-RFA learnability of that class. Hence, it seems that better
understanding of k-RFA learnability can substantially increase our understanding
of the extent to which results in other learning models depend on access to complete
examples.

A few initial results for k-RFA learning of Boolean functions are given in [3].
For instance, it is shown there that the class of Boolean functions which are rep-
resentable by k-CNF or k-DNF formulas are efficiently k-RFA learnable (for fixed
k), and that the class of k-decision-lists is (inefficiently) k-RFA learnable under the
uniform distribution. (We use the notion “efficient” learning when both the time
and the sample complexities of the learning algorithm are polynomials in the all
the learning parameters of the problem).

This paper extends our understanding of k-RFA learnability of Boolean functions
in a number of ways. First, we develop a characterization of k-RFA learnability that
forms the basis for a general tool that we later use to prove learnability hardness
results. Next, we consider the k-RFA learnability of two specific function classes: k-
DL, the class of functions expressible as decision lists in which each test is a k-term:;
and k-TOP, the class of functions expressible as a threshold of parity functions,
where each parity is defined over at most k inputs. We have chosen these classes for
several reasons. For constant k, both of these classes are efficiently PAC learnable;
in fact, they are among the most expressive classes which are currently known to



4 A. BIRKENDORF, E. DICHTERMAN, J. JACKSON, N. KLASNER, AND H. U. SIMON

be efficiently and distribution-free PAC-learnable (both contain k-CNF U k-DNF,
for example). On the other hand, their learnability in the k-RFA model is not
immediately clear. Also, our study of these classes, particularly of k-DL, has shown
that seemingly small variations in a question about the class can lead to substantial
variation in the resulting answers. This variability adds significantly to our interest
in k-RFA learnability questions. Finally, as discussed further below, a combination
of some of our results for these two classes produces an interesting result about the
relationship between weak and strong learning in the k-RFA model.

As an example of our k-DL results, we show that, in the distribution-free k-RFA
model, (n — 1)-DL is (inefficiently) learnable from an (n — 1)-RFA oracle. On the
other hand, it is information-theoretically impossible to learn (n — 2)-DL from an
(n—2)-RFA oracle, even if the decision list has at most two alternations of the labels!
Another small change, however, leads to quite a different result: with respect to
any known distribution, k-DL is k-RFA learnable (not necessarily efficiently) for all
k (for k = 1 and the uniform distribution there is an efficient learning algorithm;
cf. [11]). In yet another contrast, we also prove a hardness result showing, among
other things, that distribution-free learnability of 1-DL requires access to at least
half of the bits in each example.

Our study of k-TOP is motivated in part by the fact that it is known to have
useful Fourier properties [17]; furthermore, it has also been studied in the context of
empirical machine learning [18]. We exploit the Fourier properties of k&-TOP to show
first that k-TOP is weakly k-RFA learnable and that this learning is efficient for
constant k. Second, we show that with respect to the uniform distribution, k-TOP
is strongly k-RFA learnable with polynomial (in the usual learning parameters, and
assuming a constant k) sample complexity, but running time which is not necessarily
polynomial.

As indicated earlier, we ultimately combine some of our k-DL and k-TOP results
to obtain the following: unlike the PAC model, weak and strong learning are not
equivalent in the k-RFA model (for & < n — 2). This says that the hypothesis
boosting technique introduced by Schapire [25] for transforming weak learning al-
gorithms into strong learners depends in a fundamental way on having access to
more of the attributes in an example than the number needed for merely weak
learning.

The paper closes with some directions for further research.

2. Definitions
2.1. The Learning Model

The model introduced in [3] suggests a general way of extending any learning model
by a new mechanism which generates observations (seen by the learner) from exam-
ples (drawn by nature). In this work we use the RFA extension of the well-known
PAC model [27], as defined below.

Let F be a class of {0,1}-valued functions (concepts) over an instance space X,
and let D be some probability distribution over X. The distribution D is used
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both to generate the random training examples for the learner and to define the
proximity between a learner’s hypothesis and the correct target concept. We use
the notation « € D to denote that x is drawn randomly from the distribution D
(over the instance space X).

In the RFA model another characterizing component is added to any learning
problem. This is a set W of projections, where a projection is a mapping of classified
examples to some observation space O. In the process of learning a target function
f € F, the learner can make an observation by selecting a projection w € W,
and getting the value of w(z, f(x)), where z is a random instance drawn from D.
Choosing a projection w € W models the act of focusing the attention on a set of
features.

Let the instance space be X = {0,1}". A special interesting case of the RFA
setting is the k-RFA model, 0 < k < n, in which the learner is restricted to choose
projections from the class Wy of k-RFA projections; a k-RFA projection w € Wy,
is defined by a set of k indices {i1,...,it} C {1,...,n}. When 2 is drawn from D
and f is the target function, then the learner observes ((x;,,...,2;, ), f(z)) (where
x; is the j-th bit of z). Hence, a k-RFA learner may observe only k bits of each
instance = (this is the restriction on the size of the learner’s focus of attention),
and he can also observe the classification bit.

Formally, this focusing mechanism is modelled by a k-RFA focusing function
d : O* — Wy, which selects the next k-RFA projection based on the sequence of
observations seen so far. Given a sequence of m instances & = (z1,...,2Z;,) € X™,
a target function f € F, and a k-RFA focusing function ®, the observation sample
generated by Z, f and ® is sample(Z, f, ®) = (w1 (z1, f(21)), ., W (Tm, [(@m))),
where w; = ®(wy(x1, f(x1)), ..., wi—1 (-1, f(zi=1))), for 1 < i < m (wy is the
value of ® on the null sequence).

Having a sufficiently large sample of observations, the learner has to choose a
hypothesis h : X — {0,1} from the hypothesis class H. The error of any h with
respect to f and D is measured by errory p(h) = Pryeplh(z) # f(z)], and a
hypothesis h is called e-good (with respect to f and D) if errory p(h) < e (h is
e-bad if it is not e-good).

Following [8], our basic definition of learnability in the RFA model, is an in-
formation-theoretic one (no computational restrictions). That is, we model the
hypothesis selection by a learning function L : O* — H. Given a sufficiently large
sample of observations, a successful learning function should produce, with high
confidence, a good hypothesis. In general, the sample size should be finite, but can
be super-polynomial in the parameters of the leaning problem.

Definition 1. [k-RFA Learnability] The function class F C 2% is k-RFA learn-
able using the hypothesis class H, if there is an integer-valued sampling function
m(-,-,-,-), there is a k-RFA focusing function ®, and there is a learning function
L : O* — H, such that for every target function f € F, for every distribution D
on X, and for every 0 < €,0 <1

Przepm [errory, p(L(sample(Z, f,®)) > €] < 6
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where m = m(e, d,n, size(f)) and size(f) is the minimal representation length of

f.

Usually we seek for a learning algorithm, so we want the sampling function m,
the focusing function ®, and the learning function L, to be computable. In fact,
we are mainly interested in efficient learning algorithms. We say that a learning
algorithm is sample-efficient if its sampling function m is polynomial in %, %, n,
and size(f). Also, we say that the algorithm is efficient if it is sample-efficient, and
both its focusing function and its learning function are computable in polynomial
time (in £, %, n, and size(f)).

When the hypothesis class H is omitted it is assumed that H = {0, 1}X. However,
efficient learning in this case means that the learning algorithm outputs a hypothesis
which is computable in polynomial time. The term proper learnability is used for
the case H = F.

The above definition models the ‘distribution-free’ scenario in which the learning
algorithm can handle arbitrary generating distributions D (and does not know D
in advance). In many cases this requirement appears to be too restrictive. In
such cases we shall also consider a more permissive setting obtained by requiring
successful learning only with respect to a fixed distribution which is known to the
learner.

Finally, a function class is weakly learnable (in either the PAC or RFA model) if
it is learnable given that € is restricted to be at least 1/p(n,size(f)) for p(-,-) a
fixed polynomial.

2.2. Classes of Boolean Functions

One of the classes whose RFA learnability is studied in this work is the class of
decision lists, introduced by Rivest in [24]. A decision list is an ordered list of pairs
((t1, b1),..., (tr, by)), where each ¢; is a term (conjunction of literals, where each
literal is a Boolean variable or its negation), and each b; is a Boolean value called
label. A pair (t;,b;) is satisfied by an assignment a € {0, 1}" if¢;(a) = 1. A decision
list L defines a Boolean function as follows. The value of L on the assignment a is
determined by the label of the first item in the list which is satisfied by a. To ensure
that at least one item is always satisfied, the last item of the list is of the form (1, b),
where 1 is the term which is always satisfied. Consider, for instance, the decision
list ((T122,0), (z2Taxs,0), (£1T3T4, 1), (1,0)), which is illustrated in Figure 1. The
values of the list on inputs (1,1,1,0,1) and (1,1,0,0,0) are 0 and 1, respectively.

Intuitively, a decision list is a useful representation for a Boolean function whose
value is dominated by terms in some decreasing order of importance; i.e., a term
determines the value of the function on a given assignment only if it is true and all
of its predecessors in the list are false. In other words, the tail of the list has an
influence on the value of the function only for the assignments on which the value
of the function has not been already determined by the head of the list.
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_ false _ false _ false
1T ToXgT5 T1X3T4

true true true true

Figure 1. Example of a decision list.

A k-decision-list is a decision list in which each term ¢; consists of at most &
literals. For example, the decision list given above is a 3-decision-list. Formally,
the class of k-decision-lists is defined as follows.

Definition 2. [k-DL] A k-decision-list is a list ((¢;,b;))7_; of pairs, in which each
t; is a k-term, b; € {0,1}, and ¢, is the constant 1. The size of the k-decision-list is
r. A k-decision-list L defines a Boolean function as follows: for every = € {0,1}",
L(xz) = b; where j = min{i|t;(x) = 1}. We denote by k-DL,, the class of all
k-decision-lists over n variables.

We also denote by j-alt-k-DL,, the class of all k-decision-lists, in which the number
of alternations in each list is bounded by j (an alternation occurs when b; 11 = 1-b;).

We omit the subscript n when it is clear from the context.

It is shown in [24] that k-DL properly contains k-DNF U k-CNF, and is efficiently
PAC learnable for constant k. It is shown in [3] that the class k-DL is (non-
efficiently) k-RFA learnable under the uniform distribution. In this work we further
study the RFA learnability of this class, and show some new positive and negative
(i.e., non-learnability) results for this class.

Another class studied in this work is the class TOP, which is defined as follows.

Definition 3. [TOP] We denote by TOP the class of Boolean functions expressible
as a depth-2 circuit with a majority gate at the root and parity gates at the leaves,
and we will require an odd number of parity gates in every TOP expression so that
we need not be concerned about the value of the majority gate in the case of half
of the parity gates “voting” each way. The inputs to the parity gates are literals,
i.e., variables in either an unnegated or a negated sense. All gates in a TOP have
unbounded fanin and fanout one. A k-TOP is a TOP in which each parity has
fanin at most k; we call such a parity a k-parity. The size of a (k-)TOP r is the
number of parity gates in r.

Note that a parity may appear multiple times in a TOP circuit. It is often conve-
nient to instead think of such a circuit as having each distinct parity appearing just
once and associating a positive integer weight with it. Furthermore, as discussed
further below, we will find it useful to view parity functions and TOPs as mapping
to {—1,+1} rather than the standard {0,1}. In particular, this allows us to view
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the majority gate at the root of a TOP as a threshold function, which outputs 1
if the weighted sum of the parity functions defining the TOP is positive and —1 if
the sum is negative. Put another way, the root node simply takes the sign of the
weighted sum of the inputs to the root.

Furthermore, notice that a parity gate defined over a set of variables in which an
odd number of the variables are negated is equivalent to the complement of that
parity over the same set of variables but with all variables appearing unnegated.
For example, T1 ® 2o = 71 ® 2. Also, given the assumption that parity functions
produce values in {—1,+1}, the effect of complementing a parity function can be
achieved within a TOP expression by simply negating the weight associated with
that parity function. Thus we have that the TOP expressions M AJ((x1 & x3) +
2(T1 @ x2)) and MAJ((z1 @ x3) — 2(x1 D x2)) are equivalent. This view of TOPs as
being defined by the sign of the integer-weighted sum of uncomplemented {—1, +1}-
valued parity functions over unnegated variables will be adopted in the remainder
of the paper. The size of such a TOP is the sum of the magnitudes of the weights.

We also denote by PAR the class which contains only two functions: the par-
ity function over m variables (parity,, = x1 @ 2 @ ... ® ) and its complement
(parity, =21 @22 @ ... D Tp).

2.3.  The Fourier transform

While the Fourier transform has numerous uses in computer science (see, e.g., [1]),
we will use a somewhat nonstandard multidimensional version of the transform
first applied to learning theory by Linial, Mansour, and Nisan [23]. For each vector
a € {0,1}"™ we define the function x, : {0,1}" — {—1,+1} as xa(z) = (—1)Ziam.
That is, x.(x) is the Boolean function that is 1 when the parity of the bits in =
indexed by a is even and is —1 otherwise. These functions have the property that

Ex[xa(2) - x5 (2)] = { (1) :)ftﬁerwbise

(Expectations and probabilities here and elsewhere are with respect to the uniform
distribution over the instance space unless otherwise indicated). Thus these func-
tions form a basis for the space of all real-valued functions on {0,1}", and every
function f:{0,1}" — R can be uniquely expressed as a linear combination of the
x functions: f =3, f(a)xa, where f(a) = E[f - xa]. The vector of coefficients f is
called the (discrete multi-dimensional) Fourier transform of f (also known as the
Walsh transform). We say that a Fourier coefficient f(a) has order k if |a| = k and
has bounded order k if |a| < k, where |a| represents the Hamming weight of a. Note
that yg is the constant +1 function; therefore, f(0) = E[fx;] = E[f]. Also note
that for f € {—1,+1}, f(a) = E[fxa] represents the correlation of f and y, with
respect to the uniform distribution. For this and related reasons, in the sections
of this paper dealing with Fourier analysis and TOP functions we will assume that

fef{-1,+1}.
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By Parseval’s theorem, for every function f : {0,1}" — R, E[f?] = 3, f*(a).
For f € {—1,+1} it follows that > f2(a) = 1. More generally, for any real-valued
functions f and g, E[f - g] = 3, f(a)g(a).

3. Hardness of k-RFA Learnability

In this section we develop a characterization of the conditions under which a func-
tion class is or is not learnable from a k-RFA oracle. (In Appendix A we present
an alternative, Fourier-based characterization of k-RFA learnability which, while
potentially useful, does not lead directly to any results in this paper.) Building
on this characterization, we develop a general tool for showing k-RFA learnability
hardness, which we then apply to obtain hardness results for RFA learnability of
k-DL.

3.1.  Characterizing k-RFA Learnability

A general scheme for proving information-theoretic hardness in a given learning
model is the following one. Assume we can find a set Q of scenarios (a scenario
here is a setting of all the parameters which are unknown to the learner, typically the
target function and the target distribution), satisfying the following two conditions:

1. Any possible hypothesis made by the learner is bad for at least one of the
scenarios in Q.

2. A learner in the given model cannot distinguish between the scenarios in Q (i.e.,
each scenario in Q provides the learner with exactly the same information).

Being unable to distinguish between the different scenarios in Q, the learner has
to make the same decision in each scenario. However, since any decision is bad for
at least one scenario in Q, there must be a scenario in which the learner fails. The
exact formulation of this scheme depends on the given learning model.

Such a scheme has been first used by Kearns and Li [20] (and later by others,
cf. [16]), in proving the information-theoretic upper bound on the rate of tolerable
malicious noise. Specifically, they show that by maliciously corrupting an T
fraction of the learner’s sample, there are two different scenarios which induce the
same distribution over the corrupted sample space, yet any hypothesis made by the
leaner is e-bad for at least one of them.

We use a similar idea to formulate a general scheme for proving information-
theoretic hardness of learnability in the k-RFA model. It turns out that our for-
mulation also provides a full characterization of k-RFA learnability.

Define a scenario over the instance space X = {0, 1}"™ to be a pair (f, D) of a
Boolean function f and a distribution D over X. If f € F then (f, D) is called an
F-scenario. To formulate the notion of indistinguishability by a k-RFA learner we
define an equivalence relation among scenarios as follows. For I = {j1,...,jx} C
{1,...,n} and z € {0, 1}", let z|; = (zj,,...,x;,). Given a scenario S = (f, D)
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over {0, 1}", define for I =C {1,...,n}, z € {0, 1}*, and b € {0, 1}, the probability

ps(L,2,b) 2 Proepl f(z) =b, a|; = 2]

That is, in the scenario S, the probability of observing (z,b) when focusing on
the index set I is pg(l,z,b). The set {ps(I,z,b)}s . is called k-RFA probabili-
ties of the scenario S. We say that 51 and Sy are k-RFA equivalent if ps, = ps,
(i.e., ps,(I,2,b) = ps,(I,2,b) for every I, z, and b). Obviously, this is an equiv-
alence relation. Also, notice that for any k-RFA projection defined by a set of k
indices {i1,...,ix} C {1,...,n}, two k-RFA equivalent scenarios induce identical
distributions over the observation space, and thus k-RFA equivalent scenarios are
indistinguishable by a k-RFA learner.

A hard set for a k-RFA learner is a set of k-RFA equivalent scenarios which has
some “discrepancy”. A set has an e-discrepancy with respect to a hypothesis class
H, if every h € H is e-bad for at least one of the scenarios (recall that h is e-
bad for the scenario (f,D) if erroryp(h) > €). A set is k-RFA hard for H if it
has a non-zero discrepancy with respect to H, and all of its scenarios are k-RFA
equivalent. Notice that there might be a hard set which does not include any hard
pair. We prove that the existence of a k-RFA hard set is sufficient to imply non-
learnability in the k-RFA model. Furthermore, we also prove that this condition is
weak enough to be necessary (for non-learnability), providing a full characterization
of (information-theoretic) learnability in the k-RFA model.

THEOREM 1 A class F of boolean functions is k-RFA learnable using the class H
if and only if there is no set of F-scenarios which is k-RFA hard for H.

Proof: First we prove that the existence of a hard set of scenarios implies non-
learnability. Assume that there is a set Q of k-RFA equivalent F-scenarios, which
has an e-discrepancy (e > 0). Let Sp, be a scenario in Q for which & is e-bad. Since
the instance space is finite, the hypothesis class is also finite, hence Q" = {S;, : h €
‘H} is a finite class of F-scenarios which is k-RFA hard for H.

Let A be a k-RFA learning algorithm which uses a sample of m observations in
order to learn the class F using H. Being k-RFA equivalent, all the scenarios in Q’
induce the same m-fold product distribution P™ over the m-fold observation space.
The hardness of Q' implies that for each sequence z of m observations drawn from
P™_ the hypothesis A(z) chosen by A is e-bad for at least one scenario in Q'.

Let ag = Proepm[A(2) is e-bad for S]. As every A(z) is e-bad for some S € O/,
we have ZSGQ' ag > 1, so there must be a scenario S € Q' for which ag > \QL’I
Hence, for S being the target scenario, the probability that A fails to find an e-good
hypothesis is at least @1,‘ > 0.

Next we prove that if there is no set of F-scenarios which is hard for H, then F is
k-RFA learnable using H. Assume that there is no such hard set, and assume first
that the learner knows the exact k-RFA probabilities {ps} of the target scenario
S. Let A= {S":ps = psg} (notice that S € A). Since A cannot be a hard set, it
must have a zero discrepancy. Hence, there must be a hypothesis h which is good
for all the scenarios in A, and in particular for the target scenario S. This implies
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that an infinite sample size is sufficient for finding a good hypothesis. However,
we need to show that a finite sample size is uniformly sufficient for all the possible
target scenarios. Since the number of possible scenarios is infinite (as is the number
of possible distributions), it is not immediately obvious why a finite sample size is
sufficient.

Here is the main idea of the proof. First, we wish to show that, given the accuracy
needed from the learner, it is sufficient to consider a finite cover of the set of all
scenarios. Then, by using a finite sample, the learner can choose from this finite
cover a set of scenarios which has a small discrepancy, and includes with high
probability a good approximation of the target. Once such a set is found, the
learner can choose a hypothesis which is good for all the scenarios in the set, and
hence also for the target scenario. The crucial point here is to ensure that one can
use good k-RFA estimates in order to find a set with small discrepancy. Hence, we
need to relate the accuracy of the k-RFA estimates to the discrepancy of a set of
scenarios. This is done as follows.

Define the discrepancy of a set of scenarios A to be:

discrepancy(A) = min sup errorg(h)
her  seca

Notice that if discrepancy(A) < e then there is a hypothesis A which is e-good for
all the scenarios in A. Also, define the k-RFA resolution of a set A to be:

resolution(A) = sup ||ps — ps/llec = sup max |ps,(I,2,b) —ps,(I,z,b)]
5,8’€ A s,57eA Lzb
Obviously, if resolution(A) = 0 then all the scenarios in A are k-RFA equivalent.
Otherwise, it is possible to distinguish between at least two subsets of A by having
close enough estimates of the k-RFA probabilities.

We would like to have a lower bound on the necessary k-RFA resolution of a set A
which guarantees a lower bound on the discrepancy of the set. Assuming that there
is no set Q for which discrepancy(Q) > 0 and resolution(Q) = 0, the following
lemma establishes such a relation.

LEMMA 1 If there is no set of F-scenarios which is k-RFA hard for 'H, then for
every € > 0 there is v > 0, such that discrepancy(A) > e implies resolution(A) > v
for every finite set A of F-scenarios.

Proof: Assume that there is no set of F-scenarios which is hard for H. If the
lemma does not hold then we can find an infinite sequence of F-scenario sets
(Aj)jes, in which discrepancy(A;) > € for every j, but resolution(A;) converges
to 0. The idea of the proof is to show that in this case there is a sub-sequence of
(A;) which converges to a hard set, contradicting the assumption that there is no
such set.

First we show that there is a sequence of finite scenario set which satisfies the same
conditions. For each h € H, let Sy, j = (fn;, D1, j) € A; be an F-scenario for which
errorg, ;(h) > €, and let B; = {Sh; : h € H}. Notice that discrepancy(B;) >
€. Also notice that resolution(B;) < resolution(A;) for every j, and hence the
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sequence resolution(B;) converges to 0. Furthermore, since F and H are finite,
there is an infinite J' C J, and a set of functions {g, : h € H} C F, such that
fn,; = gn for every j € J" and every h € H.

Pick some h € H, and consider the infinite sequence (D}, j);cs-. We claim that it
has a converging subsequence. Let D be the set of all distributions over {0, 1}", and
let ds be the statistical-distance metric defined by ds(D, D) = Zze{(), 14" |D(x)—

D'(z)|. First notice that any distribution D over {0, 1}™ can be represented as a
point a € R?" by letting a; = D(i), where i is the binary vector-representation of i.
Hence, (D, ds) can be embedded as a subspace in the metric space (RQW ,d1), where
dy is the L' metric. Being a bounded and closed subspace, it is also compact, and
hence any sequence in it has a converging subsequence.

By applying the same argument iteratively for every h € H we obtain a scenario
sub-sequence (B;),ej, such that for every h € H, the distribution sub-sequence
(Dh,j)jegr converges to some distribution Dj. Let Q be the set of F-scenarios to
which the sequence (B;) e~ converges. That is, Q@ = {(gn,Dn) : h € H}. We
claim that Q is k-RFA hard for H. First notice that for every j € J':

errors, (h) > errorg, ;(h) — ds(Dp, Dy j) > € — ds(Dp, Dy, 5)

Since ds(Dp, Dy, ;) converges to 0, we get that errorg, (h) > € for every h € H,
hence discrepancy(Q) > e. Also, for every h,h’ € H and every j € J:

Ips), — pPsy, floo < ||pSh,j — DSy lloo + ds(Dhn, Dh,j) +ds(Dp, Dh@j) (1)
Since all the terms in the r.h.s. of Inequality 1 converge to 0, we get || Ps, —Ps, , ||cc =
0 for every h,h' € H, and therefore resolution(Q) = 0. ]

By Lemma 1, there is a function I' : Rt — R™, such that resolution(A)
T (discrepancy(A)) > 0 for every set A of scenarios. Given € > 0, let v =
min{I'(§), z=r }, and recall that D is the set of all distributions over {0, 1}". De-

fine D’ to be a (2¥~2v)-cover of D with respect to the statistical-distance metric
ds:

V

1>

D/

2n—k+2
{DeD : Ve D(x)e{i/M:i=0,1,...,M}} ; M:[ —‘

v

1>

T {{(f,D) : feF,DeD'}

For every D € D there is D’ € D such that d,(D, D’) < 2¥=2~. Hence, for every
two functions f and h,

erroryp(h) < errorgp/(h)+ds(D,D") < GTTOTf,D'(h)—FQk_Q’Y

Taking sufficiently large samples of the target scenario S = (f, D), a k-RFA
learner can compute an estimate pg satisfying (with high confidence) ||ps —ps|loo <
1. Let
1

B={S'€T: |lps—psl < 3}
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We claim that a hypothesis h which minimizes discrepancy(B) is with high con-
fidence an e-good hypothesis. Consider the scenario S’ = (f, D’), where D'(z) =
|D(x)M]4;. Obviously, S’ € 7. Furthermore, since |D(z) — D'(z)| < 47 for every
x, it follows that ||ps — ps/llee < 2”_’“2n,++2 = 7. Thus, with high confidence,
Ps — ps'llco < IPs — Pslloc + IPs — psille < § + 7 = 3, implying that 5" € B.
Since resolution(B) < ~ implies discrepancy(B) < § (recall that v < I'(5)), h
must be §-good for every scenario in B, including the scenario S’. Since ds(D, D") <

2" oy = 2k=2~and since v < sr=r we conclude that
=€ |

erroryp(h) < errorﬁp/(h)—I—Zk*ny < -4+

|

3.2.  Hardness of RFA Learnability of k-DL

Being an information-theoretic characterization of k-RFA learnability, the main
importance of Theorem 1 is in providing a scheme for proving information-theoretic
hardness results in the k&-RFA model. We now apply this scheme to obtain hardness
RFA results for the learnability of decision lists.

First notice that to disprove the k-RFA learnability of a function class F, it is
sufficient to find a pair of k-RFA hard F-scenarios. If the k-RFA hardness of the
pair is proved for F itself, then proper k-RFA learnability is disproved.

Now assume {F,,}n>n, is a family of function classes, where F,, is defined over
the instance space {0, 1}"™. Naturally, we are seeking hardness results which hold
for all n > ng. We now show few constructions which expand a k-RFA hard pair of
scenarios over the instance space {0,1}" into a (k4 1)-RFA hard pair of scenarios
over {0,1}"*1. By inductively applying this construction (within a family which is
closed under the construction), we will obtain a generalization of non-learnability
results from a given ng to all n > ng.

To enable compact descriptions of these constructions, we introduce few addi-
tional notations. For b € {0, 1} and ¢ € R, let (b,c) be the constant scenario
(f, D), where f(z) =b and D(z) = ¢ for all x € {0, 1}". For a scenario S = (f, D)
and b € {0, 1}, we denote by b(S) the projected scenario (b, D'), where

D'(z) & { D(z) ,if f(z) = b,

0 , otherwise.

Note that D’ is not necessarily a probability distribution over z1,...,z,. There-
fore, we denote by (b(S)) the “normalized” scenario, where D’(-) is normalized by
2 wep-1p) D'(2"). However, it will be convenient to abuse our notations by treating
the non-normalized form as a scenario.

Notice that for every scenario S, I C {1,...,n}, z € {0, 1}k, and b € {0, 1}, we
have pg(I,z,b) = Ph(S) (I,z,b), and therefore the following holds.

CLAIM 1 Two scenarios Sy, So are k-RFA equivalent if and only if both pairs
(0(S71)), (0(S2)), and (1(S1)), (1(S2)) are k-RFA equivalent.

Hence, in order to show equivalence of scenarios, it is sufficient to show the
equivalence of their projections.
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For scenarios S = (fl("),Dgn)> and Sy = <f2("),Dén)), let S; ® Sy denote the
scenario (f("*t1 D"+ where
(n) = (n)
xn+1f1 (*Th e 7xn) + xn+1f2 (21717 CIR uxn)7
Dﬁn)(xl, cey X)),
Dgn)(zl, cey ).

f("“)(acl7 ey Tng1)
D(n+1)(l’1, s Ty, 1)
D("+1)(1’1, ey Ty, 0)

>

11>

Again, S1 ® Sy forms not necessarily a scenario over a probability distribution and
we denote by (S7 ® Ss) the normalized scenario.

LEMMA 2 (Crossing Construction) If S1,Ss is a k-RFA hard pair of scenarios
over {0, 1}, then (Sy ® S3), (S ® S1) is a (k + 1)-RFA hard pair over {0, 1}

As a simple example consider the following two scenarios over {0, 1}: Both dis-
tributions are uniform, fl(l)(xl) = z1, and fél)(ml) = T;. Obviously, this pair
of scenarios is 0-RFA hard. Now, if we apply the crossing construction, we get
the following two scenarios: Both distributions remain the uniform distribution,

D (@1, 22) = 71 ® 72, and fy?) = 11 ® 2.

Lemma 2 implies that this is a 1-RFA hard pair of scenarios. By applying the same
construction iteratively n—1 times, we conclude that the class PAR,, is not (n—1)-
RFA learnable (recall that PAR,, consists of two functions—the parity function
over n variables, and its inverse). This result, which has already been shown in
[3], demonstrates the gap between PAC learnability (= n-RFA learnability) and
(n — 1)-RFA learnability (and similarly, between (k + 1)-RFA learnability and k-
RFA learnability [5]). It also immediately implies that the class DNF,, (which
contains PAR,,) is not (n — 1)-RFA learnable. We later apply this construction to
obtain hardness results for the RFA learnability of k-DL, but first let us prove the
lemma.

Proof of Lemma 2: Assume that S; = (fi("),Dl(n)>, i € {0, 1}, is a k-RFA hard
pair, and let S/ = (f"™) DYy = (5, @ S5_,), i € {0, 1}. We first prove that
S1 and S} are (k + 1)-RFA equivalent. Let I = {i1,...,i511} C {1,...,n + 1},
z € {0, 1}k+17 and b € {0, 1}. To verify that Ps; (I,z,b) = ps;, (I,z,b), consider the
following two cases:

e n+1¢€l. Assume first that 241 = 41 = 0. Then

f1(n+1)(x1, ey X, 0) = fz(n)(gcl, ey X))

D§n+1)(x1, ey X, 0) = Dé")(xl, cey Xn) /2.

(Dividing Dé")(~) by 2 guarantees that DY“H) is a probability distribution).
Hence ps; (1,2,b) = ps,(I',2',b) /2 where I' = I\ {n+ 1} and 2’ = (21,..., 2).
Similarly, ps; (1, 2,b) = ps, (I, 2',b)/2, and by the assumption ps, = ps, we get
ps;(I,z,b) = ps;(I,2,b). The case zj+1 = Tp41 = 1 is symmetric.
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e n+1¢1I LetI'=IU{n+1}, and let 2% = (21, ..., 2x41,a) for z € {0, 1}
and a € {0, 1}. Then
pS{<Iazab) = pSi(IlazO7b)+psi(ll7zlab)
= pS;(I/7zl7b)+p5’1([,7207b) :psé(I7Z,b)

The first and last equality follows directly from the definitions of the probabil-
ities pg; (I,z,b) and Psy, (I,2,b), whereas the second equality follows from the

fact that for every z € {0, 1}
1 1 _
f1(n+ )('rla"wxnyxn-‘rl) - 2(71-‘1- )(xl,---axnaxn+l)7
D§n+1)($1,...,$n,$n+1) = DénJrl)(aj‘l,...,xn,fn_i_l).

We also have to show that the pair S}, S} has a non-zero discrepancy. Let € > 0
be such that every h : {0, 1} — {0, 1} is e-bad for either Si,Se, and let b’ :
{0,137+t — {0, 1}. Let hy(z1,...,7,) = h'(21,...,7p,a). Then

err0r51(h’) = errorg,(ho)/2 + errorg,(h1)/2
errorg,(h') = errors,(ho)/2 + errors,(hi)/2

Since both hg and h; are e-bad for either S; or Sy, it follows that A’ is 5-bad for
either S7 or S%. [ |

Note that the crossing construction also applies to “non-normalized” scenarios,
yielding a hard pair of “non-normalized” scenarios. We will use this observation,
for instance, in the proof of Lemma 4.

While the pair of scenarios used in the crossing construction was k-RFA hard for
every hypothesis class, the following construction yields a pair which is k-RFA hard
for 1-DL. This will be used later to obtain a hardness result for proper-learnability
of 1-DL.

LEMMA 3 (Linear Construction) If 51,52 is a pair of 1-DL-scenarios over
{0, 1} which is k-RFA hard for 1-DL, and 1(Sy) = 1(S2), then (S1 ® (0, DM,
(S2 ® (0,D§”)>> is a pair of 1-DL-scenarios over {0, 1} which is (k + 1)-RFA
hard for 1-DL.

Proof: Let S; = (fi(n),DEn)), i € {1,2} be a k-RFA equivalent pair of sce-
narios over {0, 1}", and assume 1(S1) = 1(S2). Let S = (fi("ﬂ),Dg”H)} =
(Si @0, Dgi)z}) First notice that if fi(n) is a 1-decision list, then so is fi(nﬂ) (just
add the item (z,41,0) in front of the list fi(")).

To prove (k + 1)-RFA equivalence of S}, .S}, it is sufficient to prove it for the pair
(b(S7)) (by Claim 1). For b = 1 the claim is obviously true, since 1(S1) = 1(S2)
implies (1(S7)) = (1(S%)). For b = 0, consider the scenarios T3 = (S; ® S2),
Ty = (S2 ® S1) (obtained by the crossing construction). Note that T; differs from
S/ only on 1-instances, i.e., an instance labeled by 1. By Lemma 2 the pair Ty, T
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is (k+1)-RFA equivalent, i.e., pp, (I, 2,0) = p1, (1, 2,0), for all I = {iy,...,ix41}
{1,...,n} and z € {0,1}*1. Hence,

N

Po(s;) L 2.0) + (g2, 1) = pri(l,2,0)
= pp,(I,2,0)
pO(SQ)(I7ZvO)+p1(52)(laz71)a

and since pl(Sl)(I’Z’l) = p1(52)(l,2,1) (case b = 1) we have po(sl)(l,z,O) =
pO(SQ)(I’ z,0). Hence, the scenarios (0(S1)) and (0(S2)) are (k+1)-RFA equivalent.

Finally, we prove that pair 7,5} has a non-zero discrepancy with respect to 1-
DL. Let € > 0 be such that every 1-decision list over {0, 1}" is e-bad for either Sy
or Sy. Let h be a 1-DL over {0, 1}, and let h/(z1,...,2n) = h(z1,...,Tn,1).
Obviously, A’ is a 1-decision list over {0, 1}", and hence is e-bad for either S; or
Sy. But errorg;(h) > errors,(h')/2 for both i = 1 and i = 2, and hence h is 5-bad
for either S or S5. [

Using the linear construction, we prove the following theorem.

THEOREM 2 1-DL is not properly (n — 2)-RFA learnable.

Proof: By Lemma 3 it is sufficient to show the existence of a 0-RFA hard pair
of scenarios over {0, 1}°. Let f1(2) = ((z2,1), (x1,1),(1,0)), f2(2) = (T2, 1), (%1, 1),
(1,0)), D§2) = 1 for every z # (0,0), and Df)(z) = 1 for every z # (1,1) (see
Table B.1 in Appendix B). It is easy to verify that this forms a pair of scenarios
over {0, 1}* which is 0-hard for 1-DL. [ |

Notice that the linear construction always adds the item (2,,41,0) in front of the
list, and therefore the lists which are used to obtain the hardness of proper (n —2)-
RFA learnability have only two alternations of their labels. This implies that even
the class 2-alt-1-DL is not properly (n — 2)-RFA learnable.

Next we turn to non-proper learnability of 1-DL. In the next section we present
an algorithm that learns this class, if the learner has access to at least half of the
attributes (Theorem 6). We now show that this result is tight—mno algorithm can
learn 1-DL in the k-RFA model when k < n/2. We use the following construction.

LEMMA 4 (Projecting Construction) If S;, i € {0, 1} is a pair of 1-DL-sce-
narios which is k-RFA hard over {0, 1}™, then the pair S} = (U; ® V;), where
Ui =8, ®0(53-;) and V; = 1(S3_;) ® (1,2™™) (see Table 1), is a pair of 1-DL-
scenarios which is (k + 1)-RFA hard over {0, 1}"72.

Before we start the proof let us mention the following simple claim.

CLAIM 2 Given two k-RFA equivalent scenarios Si,Ss, an arbitrary scenario S
over n variables, and a real number a > 0, the scenarios S; = (aS1 ® S) and
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Table 1. An illustration of the scenarios defined in Lemma 4.

Tn+1 Tn+1
Tp42 1 0 Si Tp42 1 0 Sé
1 S1 0(52) Ui 1 Sa 0(5’1) Us
0 [1(S2) (1,27™) |V 0 [1(51) (1,27™) | Vs
Sl U1 V1 SQ U2 V2

Sy = {(aS2®S) are also k-RFA equivalent, where aS; denotes the scenario obtained
from S; by multiplying all the probabilities by o > 0.

Proof of Lemma 4: First note that that if S; is a 1-DL-scenario, then so is 5]
(just add the items (Zp42,1), (Tnt1,0) in front of the 1-decision list of the scenario
Si)-

The proof that the non-zero discrepancy of the pair Sy, Ss is preserved by 57, S5
is similar to the argument made in the proof of Lemma 2. Hence, it remains to
show that the scenarios (b(S})) are (k + 1)-RFA equivalent for b € {0, 1}. For the
case b =0 we get:

0U; @ Vi) = 0((Si ®0(S3-4)) ® (1(S3-) ® (1,27")))
= 0(5; ® 0(S3-4)) ©® 0(1(S3-4) ® (1,27™))
= O(Si ® SS—i) ® <0,0>
Since the pair Sp, Sy is k-RFA equivalent we obtain by Lemma 2 and Claim 1
that the scenarios (0(S; ® S3—;)), i € {0, 1} are (k + 1)-RFA equivalent. Hence, by
Claim 2, the scenarios S; = (0(U; ® V;)) are (k + 1)-RFA equivalent.
For the case b = 1, consider the following pair Si, i € {1,2} of scenarios over
{0, 1} +2:

11>

(U; @ V;), where U, 25 1(S5_;), and V; 2 0(S3-;) ®(1,27™)

/
i

(See Table 1). Similarly to the case b = 0, we get that the scenarios (1(S!)),
i € {0, 1} are (k4 1)-RFA equivalent, since
L@ V) = 1((S; @ 1(S3-4)) @ (0(S3-4) @ (1,27")))
= 1(5; ®1(53-:)) ® 1(0(S3-) ® (1,27™))
= 1(5 ® S3-:) ® ((1,0) ® (1,27"))
Note that S'Z’ represent the same scenarios as S} up to permutation of the variables

Tn+1, Tnta, and hence, the scenarios (1(S7)), ¢ € {0, 1} are also (k + 1)-RFA
equivalent. [ |

The projecting construction can be used to prove the following theorem.

THEOREM 3 1-DL is not [ 251 |-RFA learnable.
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Proof: It is sufficient to proof the theorem for odd n. (For n even, the (§ —1)-RFA
non-learnability of 1-DL,,_; implies (5 — 1)-RFA non-learnability of 1-DL,,). By
the projecting construction of Lemma 4, it is sufficient to show a pair <f1(3), D%P’)),
( 2(3) D§3)> of 1-DL-scenarios which is 1-RFA hard. Let:

)

= (@, 1), @s, 0), (@1, 0), (1, 1))
O = (@, 1), @2, 0), (21, 0), (1, 1))

Let D;n)(m) = ¢ for = € {(0,1,0), (1,0,1)}, otherwise Dgn)(x) = 5, and let
1

Dé")(x) = ¢ for 2 € {(0,0,1), (1,1,0)}, otherwise Dg")(z) = L (see Table B.2 in
Appendix B). It is easy to verify the 1-RFA hardness of this pair. [ ]

The 1-decision lists fi(n) used in the above proof have n—1 alternations. However,
we can define functions gz(n) € 2-alt-1-DL such that Pryep,[g:(x) # fi(z)] = 0.
Hence, <g§n)7D§n)> is also a L"T_lj—RFA hard pair, implying that even the class
2-alt-1-DL is not L”TAJ—RFA learnable. Assuming again that n is odd, gin), gén)
will be the following 2-alternating 1-decision lists

((®n, 1), @n-2,1),...,(T3, 1), (Tn=1,0), (Tn—s, 0),..., (T2, 0), (1, 0), (1, 1)),
<(§n> 1)7 (fn—Qa 1)7 B (fﬁh 1)7 (jn—la O)a (En—fi, 0)7 ) (f% 0)7 (xlv 0)7 (13 1)>

Assume g¢;(z) # fi(z). Note, that there exists no x = (z1,...,z,) for which
gi(x) = 0 and f;(z) = 1. Furthermore, g;(z) = 1 and f;(x) = 0 implies x3 =
OVzs=0V ... Vz, =0. Observing that

f@)=0ADM (@) >0 = as=a5=... =z, =1,

we get D;(z) = 0.
By combining the crossing and projecting constructions, we obtain yet another
hardness result. Assume we have a pair S; = ( fi(c),D(c)> of ¢’-RFA hard sce-

narios where fi(c) € a-alt-¢’-DL.. Now the crossing construction yields a pair
Sl = (fi(CJrl),DgCH)) of (¢ 4+ 1)-RFA hard scenarios where fi(cﬂ) € a-alt-(¢” + 1)-
DL.t1. We get by induction that n — (¢ —¢”)-DL is not n — (¢ — ¢’)-RFA learnable
for constant ¢,¢’,¢”. By Theorem 3 we know that 1-DLj41 is not |k/2]-RFAj 41
learnable. Setting c=k+ 1, ¢’ = |k/2], ¢’ =1 we get

THEOREM 4 (n — k)-DL is not (n — 1 — [k/2])-RFA learnable.

Again, the lists used in the proof have at most two alternations, and thus even
the class 2-alt-(n — k)-DL is not (n — 1 — [k/2])-RFA learnable. Also note that for
a fixed k, the class 1-alt-k-DL = k-DNF U k-CNF is efficiently k-RFA learnable [3].

4. Distribution-free Learning of Decision Lists

In this section we contrast the hardness results, shown in [3] and in Section 3 of
this paper, with two positive results for RFA learnability of decision lists. Both
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results are tight in terms of the amount of visible attributes used by the learning
algorithms. In the analysis of both learning algorithms we make use of the following

LEmMMA 5 Let A C {0, 1}X be finite, and let D be a distribution on X. For every

A € A, let p(A) = Pryep[A(x) = 1], and let p(A) be the empirical estimate of

p(A) based on a sample of size m. For every 7,0 € (0,1), and every 8 € (1,2],
2

let M(t,8,0,t) = [w log %] For a sample of size m > M(7,(,6,|A|), the

T(8-1)2
following holds with confidence 1 — §: For every A € A,
A .
o) > o7 — P8 <) < o)

p(A) < fBr = p(4) < B2

Proof: For a sample of size m, and for every A € A, the Chernoff bounds imply

[2]:

Pr[p(A) > Bp(A)] < e~ mp(A)(B-1)?/3
Prjp(A) < p(4)/8] < e—mP(A)(ﬂ—l)z/(Qg"‘)

If we upper bound all inequalities (for every A € A) by ‘fifl, then all the estimates

are within (3 of their true values. Solving for m yields m = M(r, (3,9, |A]).
|

4.1. (n — 1)-RFA learnability of (n — 1)-DL

In the PAC model, every class of Boolean function is clearly (information-theoretic)
learnable. As implied by the hardness results in [3] and in Section 3 of this paper,
this is not the case in the k-RFA model, when k& < n. In fact, any class which
contains both the parity function and its inverse (over n variables) is not (n — 1)-
RFA learnable. One may ask whether by excluding these two functions we gain
(n — 1)-RFA learnability. We answer this question affirmatively. (One may also
add either the parity function or its inverse, but not both, without affecting the
(n — 1)-RFA learnability of the class). Notice that this class is actually the class
(n—1)-DL, and hence by Theorem 4, is not (n—2)-RFA learnable. Thus, the result
is also tight in terms of the visibility size.

The time and sample complexities of the learning algorithm are O((n32"/¢)(n +
In(1/4))). Notice that, since VCdim((n — 1)-DL) = 2™ — 1, every algorithm which
PAC learns (n — 1)-DL (let alone an RFA one) needs a sample size exponential in
n (13)).

THEOREM 5 (n — 1)-DL is properly (n — 1)-RFA learnable with a sample and time

complezity of
3on
0(" 2 <n+1n1)>.
€ )
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Proof: We start by showing information-theoretic learnability of this class, then
elaborate on the details needed to construct a learning algorithm. By Theorem 1,
the class is properly learnable if there is no (n — 1)-RFA hard set for the class
(n — 1)-DL. Recall that all the scenarios in such a hard set should be (n — 1)-RFA
equivalent. However, we show that no two (n —1)-DL scenarios can be (n—1)-RFA
equivalent. Furthermore, we show how to construct the target decision list from
the (n — 1)-RFA probabilities; this construction suggests the basic strategy for the
algorithm presented later.

An (n — 1)-RFA observation is made by fixing an index set I = {1,...,n} \ {k}.
For a target scenario S, we have denoted the probability of observing (z,b) via
this index set by ps([,z,b), where z € {0, 1}"_1 and b € {0, 1} (see Section 3).
Notice that I and z identify a pair of instances which differ only in the £’th bit;
we call such an unordered pair a k-edge. We use the notation pg(e,b) = ps(I, z,b),
where e is the edge determined by I and z, and S is the target scenario (omitted
in the sequel). We show how to construct the target function f from the set of
(n — 1)-RFA probabilities {p(e,b)}.

First notice that if an edge is pure, i.e., both of its instances have the same label
b, then p(e,1 — b) = 0. Hence, the label of a pure edge e can be determined from
the probabilities p(e,0) and p(e,1). Also notice that once the labels of an edge e
have been determined, the value of any adjacent edge ¢’ can be determined (e’ is
adjacent to e if they share a common point), as follows. Assume that e = (x,y) is
adjacent to e’ = (y, z), and that the label of y has been determined to be b. Then,
if p(e/,1 —b) =0 (¢ is pure) then the label of z is b, otherwise (¢’ is impure) it is
1 — b. Finally, there is at least one pure edge for every (n — 1)-decision list—the
edge which is determined by the first item in the list. This edge can be used as
a pivotal edge for determining the labels of all the other edges in n — 1 stages (in
stage ¢ determine the value of an edge whose distance from the pivotal edge is 7).

The above argument proves that the exact (n — 1)-RFA probabilities determine
an (n — 1)-decision list, and Theorem 1 guarantees that estimates based on a finite
sample size are sufficient to identify the target list. However, to construct a learning
algorithm, we need to refine the basic approach described above.

First we need to refine the notion of being a “pure” edge to allow for a small
amount of error. To see why, consider two impure adjacent edges e = (x,y) and
e’ = (y, z), where the probability of drawing e is low, and the probability of drawing
€’ is high. Assume further that the label of x and z is 0, while that of y is 1. Having
a small probability, the impure edge e might look to the learner like a pure edge.
Deciding first the value of e (i.e., of both z and y) to be 0, and knowing that e’
is impure, the above approach assigns the wrong label to z, incurring a significant
error. Hence, it is preferable in such a case to consider the “almost pure” edge e’
as being pure, labelling z with 0.

Furthermore, we have to allow for the amount of impureness in a pure edge to
increase throughout the stages of the algorithm. This is due to the fact that this
impureness is only estimated. Consider again the previous example, and assume
that, in deciding the label of the edge e, we allow for an empirical impureness
of size 7. If our estimates are within a factor of § of the real probabilities, then
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the real impureness could be of size 57. (A good choice for § will be determined
later.) Hence, in deciding the label of the edge €', the real impureness that should
be tolerated is 37, so the estimated one should be 3%7. Thus, if 7; is the amount
of empirical impureness allowed in stage i, 7,1 should satisfy 7,1 = 3°7;. Since
Th—1 = (%" 271, and since the error incurred by each impureness is bounded by
0B7;, choosing 19 = 52"%12” guarantees that the overall error is bounded by e.

The learning algorithm works as follows. For every 1 < k < n it takes a sample
of size m’ via the index set {1,...,n}\ {k}, and, for every k-edge, it estimates the
probability p(e,b); let p(e,b) be this estimate. We will determine the value of m’
later. An edge e is b-pure at stage i if p(e,1 — b) < 74, (Note that e can be both
b-pure and (1 — b)-pure). e is impure if it neither 0-pure nor 1-pure.

Having the estimates, the algorithm first searches for a pivotal edge—a pure edge
e = (z,y) (pure at stage 0), and sets h(z) = h(y) = b if e is b-pure. Then, at any
stage 1 < 4 < n — 1, the algorithm sets the value of any edge ¢/ = (y,z) which
is adjacent to an edge e = (z,y) whose value has been set at stage i — 1: if €’ is
h(y)-pure at stage i then h(z) = h(y), otherwise h(z) = 1 — h(y).

We now prove that h is e-good for the target function f and the target distribution
D, if the following conditions hold for all the estimates p(e, b): if p(e,b) > Bro then
p(e,b) is within a factor of B from p(e,b) (in both directions), otherwise (p(e,b) <
Bo) ple,b) < B%70.

Since 371; < 5 at any stage 1, it is sufficient to prove that for every instance x,
if D[z] > B7;, and h(z) has been set in stage ¢, then h(x) = f(x). The proof is by
induction on 4. If the pivotal point e = (x,y) is b-pure at stage 0, then it satisfies
ple,1—b) < 19, and p(e, 1 —b) < (79, hence the claim is true for i« = 0. Assume that
the label of ¢’ = (y, z) is set in stage i + 1, using an edge e = (z,y) whose second
label has been set in stage i. If D[z] > B7;41, then p(e’, f(2)) > 711, and therefore
e’ cannot be (1 — f(z))-pure. Hence, h(z) = 1 — f(z) only when €’ is impure, and
h(y) =1—h(z) = f(2) # f(y). But then, by the induction hypothesis, D[y] < S,
implying p(e’, f(y)) < 3?7; = Ti,1, contradicting the impureness of ¢’.

It remains do determine appropriate values for 8 and m/, and to show that the
above assumptions on parameters p and p are valid with probability at least 1 — 4.
For fixed k, there are 2"~ ! k-edges, and therefore 2" probability parameters that
have to be empirically estimated from m’ examples. Since we have n samples (one
for each 1 < k < n), we want all estimates based on a sample of size m’ to be
accurate with confidence 1 — %. Hence, by Lemma 5, we need a sample of size m' =

M(Tg,ﬁ,%,2”) :O<@ (n—i—ln%)), and thusmznm’:O(”stn (n—&-ln%)).

As for the time complexity of the learning algorithm, first notice that the number
of edges is 52" = t. Computing the estimates from a sample of size m can be done
in O(m), and finding the pivotal edge can be done in O(t). Choosing a pivotal edge
induces an order on the visit of the other edges, considering each edge only once
(at a stage ¢ which is its distance from the pivotal edge). As t = O(m), the overall
time complexity is O(m). [ |
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4.2. (n — k)-RFA Learnability of 1-DL using k-DL

Theorem 3 shows that 1-DL is not |51 |-RFA learnable (using any hypothesis
class). We now contrast this result by showing that for k¥ < n/2, this class is
(n — k)-RFA learnable using the hypothesis class k-DL. This shows that 1-DL is
learnable if and only if at least half of the attributes are visible in each example.
The learning algorithm is efficient for £ = O(logn), and is proper for k = 1. Note
that, by Theorem 2, 1-DL is not properly (n — 2)-RFA learnable.

THEOREM 6 For every every 1 < k < n/2, the class 1-DL is (n—k)-RFA learnable

k3n2 22k

using k-DL, with sample complexity of O (f log %), and with time complezity
k)4 222k
of O (”7 log %)

Proof: As in the proof of Theorem 5, we start by showing information-theoretic
learnability of this class. That is, given a target 1-decision list, we show how to
construct a k-decision list from the exact (n — k)-RFA probabilities. Then, we
show how to settle for good estimates of these probabilities in order to find a good
approximation of the target list.

First notice that for every 1-decision list there is an equivalent one in which each
variable appears only once (cf. [26]). Hence, we may assume that in both the target
and the hypothesis list each variable appears only once.

We construct the hypothesis i gradually. At any intermediate stage, there are
instances for which & is not defined. For any such instance z, we denote h(z) = ().
We also denote by |h| the number of items in h. Given a partial decision list A and
a term t, define B(h,t) = {z € {0, 1}" : h(z) = 0, t(z) = 1}. That is, B(h,t) is
the subset of instances which are not defined by the partial list i, and are satisfied
by the term ¢t. We call such a subset block. For a target scenario S = (f, D), and
a block B = B(h,t), let ps(B,b) = Pryeplz € B, f(x) = b] (we henceforth omit
the subscript S). Notice that if p(B(h,t),1 —b) = 0 and h is consistent with f,
then appending (¢,b) to h preserves this consistency. In such a case we say that the
block B(h,t) is b-pure.

The construction of the decision list from the (n — k)-RFA probabilities can be
done in three phases. The first two phases are based on the following observation
(cf. [24]): If f is a 1-decision list, and h is a partial 1-decision list, |h| < m, then
there is a literal [ for which the block B(h,l) is pure (take the first literal ! in
f which does not appear in h). Hence, the construction is essentially based on
searching for pure blocks; if B(h,l) is b-pure, then we can add the item (I,b) to h.
However, notice that the probability p(B(h,1),b) is a (Jh|+1)-RFA probability, and
recall that we can only use (n— k)-RFA probabilities. Hence, as long as |h| < n—k,
using the (n — k)-RFA probabilities to find pure blocks is straightforward. This
forms Phase 1 of the construction.

How can we find pure blocks when |h| > n — k? Phase 2 of the construction is
base on the following observation. Let hj be the list obtained from h by deleting
all the (1 — b)-items, where a b-item is an item of the form (I,b). We claim that
if |hy] < m — k for both b = 0 and b = 1, then there is a literal [, and there is



ON RFA LEARNABILITY OF BOOLEAN FUNCTIONS 23

b € {0, 1}, such that B(hi_p,!) is a b-pure block. To see why, recall that there
is an item (I,b) such that B(h,l) is b-pure. But if hyi_p(z) = 0 and h(z) # 0
then necessarily h(z) = b = f(x), and therefore the block B(hi_p,1) is also b-pure.
Hence, we can continue the construction as long as |hy| < n — k for both b = 0
and b = 1 (searching for a b-pure block B(hi_p,1), for either b = 0 or b = 1, and
appending the item (I,b) to h once such a pure block is found).

Finally, assume that |hy| = n —k (for either b = 0 or b = 1), but |h| < n (h is not
yet complete). If the next pure block B(h,!) is (1 —b)-pure, this cannot be revealed
using the (n — k)-RFA probabilities. However, notice that the number of variables
which are not in hy is is bounded by k¥ < n — k. Consider a block B = B(), 1),
where () is undefined for every z, and is a k-term over the variables which are not
in hy. (Notice that the probability p(B,b) is an (n — k)-RFA probability). Since
B(hy,t) is a singleton Z} (the assignment to every variables is determined by either
hy or t), if B(0,t) is impure, it must be due to f(z) = 1 — b. Hence, in that case
(t,1 —b) can be appended to the list. After appending all the (1 — b)-singletons to
the list & (i.e., all the instances for which h(z) = 0 and f(x) = 1 —b), we can close
the list with the item (1,b), concluding with a k-decision list which is equivalent to
the target 1-decision list (each step of the construction of h preserves consistency,
and the final h is defined over the entire instance space).

When using estimates p(B,b) of the (n — k)-RFA probabilities p(B,b), impure
blocks may look like pure blocks to the learner, and thus the constructed list h is
only an approximation of the target list. Hence, we have to refine our notion of
pureness to allow for a small amount of impureness which might increase throughout
the stages of the algorithm. We assume that each estimate is within a factor of g3
of the true probability whenever the true probability is at least S (the value of 7
and the sample size needed for that to hold will be determined later), and analyze
the error incurred by the the three phases of the construction.

At each stage of Phase 1 (|h] < n — k) we search for empirically pure block B
(p(B,b) = 0). If the block is actually impure, then by Lemma 5 p(B,b) < 7, so
the overall error incurred in this phase is €; = (n — k)G7.

Next consider Phase 2 (Jh| < n —k, |ho| < n —k, |h1| < n — k). Recall that at
each stage of this phase we search for a b-pure block B(h,!), but can only estimate
the probability p(B(hi—p,1),b). Since hy is not necessarily consistent with f (due
to the error incurred by previous stages), the block B(h1_p,!) may include a small
amount of impureness. To recognize that (I,b) is a proper item to append at stage
i, we allow for an empirical impureness 7;, which includes all the errors incurred
by previous stages of Phases 1 and 2. That is, ;, = [e; + 62;;11 B, implying
7 = (n — k)B%r(1 + B2)*~1. Hence, The overall error incurred by this phase is
bounded by e = Zle B = (n—k)Br((1+ 52)k —1).

Each impure block B(0,t) found in Phase 3 determines the value of a specific
instance © € B(hy,t). Let B = B(0,t) \ {#}. Then B’ C {z : h(z) = b}.
The impureness of B((,t) might be due to the errors in B’ incurred by previous
stages. This error can be bounded by €; + €5. Hence, we can allow for an the
empirical impureness of 3(e; + €3) for the block B(f,t), and hence appending the
item (¢,1 — b) to the list incurs an error of at most 3?(e; + €2). Since at most
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2% instances are determined in this phase, the overall error incurred by Phase 3 is
e3 = 2832 (e1 + €2) = (n — k)337(1 + §2)F.
The overall error is errory p(h) < €1 + €2 + €3 = (n — k)7B(1 + 322%) < (n —

E)Tp%(1 + B2)k2%+1 and choosing 7 = R pYFoeeT uarantees  that

errory p(h) < e. Notice that for § = (1 + %)% we have 7 = O(.5) and
1 o2

w7 = 0.

Now we can determine the sample size needed in each phase, so that any estimate
of a probability larger than (7 is within a factor of 3 of that probability. As the
overall confidence in all the estimates should be 1 — §, we require a confidence of

- g for all the estimates used by each one of the three phases. Recall that by

Lemma 5, a sample of size M (1, [,6,t) = f%f)@?) log £] is sufficient to ensure

(with confidence 1 — §), that for a set of ¢ estimates, each estimates is within a
factor of 3 of the true probability, whenever the probability is greater than .

The first phase consists of n — k stages. At each stage, having the current hy-
pothesis h, we search for a literal I, for which the block B(h,!) is pure. Let S be
the variables which appear in h. We can decompose the variables which are not in
h into f%'_h”hﬂ < k—+1 sets, and for each such set T, focus our attention on SUT.
Hence, we need (n — k)(k + 1) samples in this phase. For each such sample we need
to estimate 4(n — k — |h|) probabilities (estimating p(B(h,1), b) for every new literal
[ and every b € {0, 1}). By Lemma 5 a sample of size M (7, 3, m, 4(n—k))
is sufficient, hence a sample of size (n — k)(k + 1) M( d(n — k) =
O( k3n2 22k

€

s
™08 smmer
log %) is sufficient for Phase 1.

At any stage of Phase 2 we search for a (1 — b)-pure block B(hy,1), where |hy| <
n — k. Let S, be the set of variables in h,. Then, for every variable v not in h
(at most k) we need to focus our attention on S, U {v}, for either b =0 or b = 1.
Hence, 2k samples are sufficient at each stage, and 2k? samples are sufficient for
the entire phase. For each sample we need to estimate at most k probabilities,
hence by Lemma 5, a sample of size M (1, 3, %, k) is sufficient for each stage, and

2k2M (1, 3, %, k) = O(w log %) is sufficient for the entire Phase 2.

In Phase 3 we take one sample and estimate at most 2* probabilities. Hence a

sample of size M (1, 3, %, 2F) = O(@ log 3) is sufficient for this phase, and the

X X . 13292k
overall sample complexity of the algorithm is O ("T log %)

The time complexity is essentially determined by the time needed for estimating
the k-RFA probabilities. In the first two phases this is obvious. To see this for the
third phase note that an item (¢, b) is added only if the corresponding B(f), t) is not
b-pure. But this can happen only if an example (labeled b) in this block is drawn.
Hence for each such item at least one example has to be drawn.

In Phase 1 each example drawn changes at most k empirical probabilities, whereas
Phases 2 and 3 each example drawn changes only one empirical probability. Hence,
the time complexity is O(km). [ |
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4.8.  Summary of Results about Distribution-free Learning of Decision Lists

Table 3 (Table 4, resp.) summarizes the results shown (or directly implied by them)
in this paper and known results from literature ([24]) for proper (improper, resp.)
RFA-learning. A legend is given in Table 2.

Table 2. Legend for Tables 3 and 4.

Symbol  Meaning

+e efficiently learnable

+ learnable (maybe efficiently)

+1 only inefficiently learnable

— not learnable (even not inefficiently)
? learnability unknown

—/? “—7 if n is even, and “?” if n is odd

Table 3. Summary of results for proper b-RFA-
learning of a-DL.

a\b 0,...,n—2 | n—-1 n

0 +e +e +e

1 — +e +e

2, J k — ? +e

n —k, ,n—2 — ? +1i
n—1 — +1 +1

n — — +1

Table 4. Summary of results for improper b-RFA-learning of a-DL.

a\b 0,...,k|[[n/2] = 1| [n/2]||n—O0ogn)||n—k|ln—4|n—-3[n—2{n—-1|n
0 +e +e +e +e +e +e +e +e +e |+e

1 — = + +e +e +e +e +e +e |+e

2 — — —/7 ? ? ? ? ? + | te

3 — — — ? ? ? ? ? + | te

4 — — — ? ? ? ? ? + | te
k—1 — — — ? ? ? ? ? + |te
k = . = ? ? ? ? ? + | te
n—k — — — — — ? ? ? +i |+
n—k+1 — — — — — ? ? ? +i |+
n—6 — — — — — — ? ? +i |+t
n—>5 — — — — — — ? ? +i |+t
n—4 — — — — — — — ? +i |+
n—3 — — — — — — — ? +i |+
n-—2 — — — — — — — - +i |+
n—1 — — — — — — - - +i |+
n — — — — — — — — — |+
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5. Learning Decision Lists under Fixed Distributions

Let D be an arbitrary, but fixed, distribution over X = {0,1}". Two functions f, g
in n Boolean variables are called D-equivalent if Pryep[f(x) # g(x)] = 0. We say
that a Boolean term ¢ separates f, g if Proep[f(x) = 1|t(x) = 1] # Preeplg(x) =
1|t(x) = 1]. For fixed distribution, the assertion of Theorem 1 can be reformulated
as follows:

THEOREM 7 1. If F contains two functions f,g which are not D-equivalent and
cannot be separated by any k-term t, then there exists no hypothesis class 'H
such that F is k-RFA learnable using H.

2. If every two functions f,g from F which are not D-equivalent can be separated
by some k-term t, then F is properly k-RFA learnable.

Proof:

1. We claim that (f, D), (g, D) form a k-RFA hard set of scenarios even for hy-
pothesis class 2%. Obviously, both scenarios are k-RFA equivalent, since they
cannot be separated by any k-term. Observe next that the symmetric difference
of f,g has a strictly positive probability v because f,g are not D-equivalent.
Choose € = «/3. Certainly, no hypothesis can be e-good for both, f and g.
Thus the claim follows. By Theorem 1, F is not k-RFA learnable using 2%
(and thus not k-RFA learnable using any hypothesis class).

2. Assume that F is not properly k-RFA learnable. We have to show that F
contains two functions f, g that are not D-equivalent and cannot be separated
by any k-term t. By Theorem 1, there exists a k-RFA hard set of scenarios for
F. Since D is fixed, this hard set has the form {(f1,D),...,(fr, D)}. If the
functions f; were pairwise D-equivalent, hypothesis f; would be e-good (even
0-good) for all potential targets f;. This would contradict the k-RFA hardness
of the set. Thus there exist two functions f, g in this set which are not D-
equivalent. Since (f, D) and (g, D) are k-RFA equivalent, there cannot exist a
separating k-term ¢. This concludes the proof. [

The essential message of Theorem 7 is that k-RFA hard sets (if there are any)
can always be formed by two hypotheses being D-inequivalent and nonseparable
by any k-term.

THEOREM 8 For any fixed distribution D over {0,1}"™, k-DL is properly k-RFA
learnable for all 1 <k <n.

Proof: According to Theorem 7 it suffices to show that any f, g € k-DL, which
are not D-equivalent, can be separated by some k-term t. Let L be a decision
list with items (¢;,b;) for 1 < ¢ < r representing f, and L’ a decision list with
items (7,0}) for 1 < j < r representing g. Here, we assumed, for the sake
of simplicity, that both lists have the same length r (using redundant items for
one list if necessary). Let L, and L; be the lists starting both with the sublist
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Sg = [(t1,b1), (t1,01), ..., (t4,by), (t;, b)] and ending with the remaining items of,
respectively, L and L'. Let f,, g, be the functions represented by these lists, re-
spectively. Note that L, = L!. The maximal index ¢ such that f is D-equivalent
to f, and g is D-equivalent to g, is therefore smaller than r. Let P C {0,1}" be
the set of Boolean vectors of positive probability under D, A the subset of vectors
from P which satisfy one of the terms in S;, B = P\ A, T = {z|ts41(z) = 1},
and T" = {z|t,,(r) = 1}. Since L, represents f and L; represents g up to
D-equivalence, it follows that:

Vee A: f(x) =g(z), VeeBNT: f(z)=bgt1,
Ve e BNT :g(x) =0} ,.

The maximality of ¢ implies that:
Jz € BNT :g(x) #bgy1 or Iz € BNT : f(x) # bl ys.

It easily follows that ¢, or t;, separates f,g. [ ]

The running time and the sample size of the learning algorithm, given implicitly
in the proof of Theorem 8, depend on the specific choice of k and D, and are
certainly not polynomial in general. However, it is known that with respect to the
uniform distribution, 1-DL is efficiently 1-RFA learnable [11].

6. k-RFA Learnability of k-TOP

In this section we prove two positive results for the learnability of k-TOP in
the k-RFA model. First, we prove that k-TOP is weakly k-RFA learnable in a
distribution-independent sense. We also show that k-TOP is sample-efficiently k-
RFA learnable with respect to the uniform distribution. In the next section we
combine the weak learning observation of this section with one of our negative re-
sults for decision list learning to show that weak and strong learnability are not
equivalent in the k-RFA model.

It should be noted that, as is standard in Fourier analysis, we assume throughout
this section and the next that Boolean functions map to {—1,+1} unless otherwise
stated. This includes decision lists, so we will assume a slightly different definition
here in which the b; defining a decision list are in {—1,+1} rather than in {0, 1}.

6.1. Weak Learnability of k-TOP

Our first observation is that the class k-TOP of thresholds of k-parities is weakly
learnable from a k-RFA oracle, and the learning is polynomial-time for constant k.
This is a direct result of the following lemma, which is a slight modification of a
similar result in [17].

LEMMA 6 Let f be any k-TOP of size s and D any distribution over the domain
of f. Then there exists a parity x, with |a| < k such that
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1
Pr, = Ya] — 3| > —.
‘IED[f X] 2|—28

We use the notation O(-) in the following theorem and elsewhere to represent the
standard big-O notation with log factors suppressed.

THEOREM 9 k-TOP is weakly k-RFA learnable in time O(n*+1s?).

Proof Sketch: By standard Chernoff bound arguments (see, e.g., [18]), given an
example oracle for f and a fixed y, we can produce an estimate of Pryep[f = Xa)
that, with probability at least 1—§ over the random draws by the example oracle, is
within 1/(8s) of the true value. Furthermore, the algorithm producing this estimate
runs in time O(ns?log§~1), where the algorithm is assessed unit time for each call
to the example oracle. Notice also that a k-RFA oracle suffices rather than a full
example oracle if the parity x, is a k-parity.

Thus if we know the size s of the target then we can find a weak approximator
to k-TOP f by querying a k-RFA oracle in order to estimate the correlation of
each of the O(n*) k-parities with f and choosing as the weak hypothesis any parity
having correlation of at least 3/(8s) (the § used in each estimate must of course
be set sufficiently small to assure that the overall confidence of the procedure is
within that allowed to the weak learner). That such a weak hypothesis exists is
guaranteed by the lemma above. Because only O(n*) estimates are performed and
each estimate requires time O(ns2), this procedure satisfies the claimed time bound.

If the size s of the target function f is not known, a standard guess-and-double
technique can be applied (see, e.g., [18]). That is, we can start with s = 1. If no
k-parity has correlation 3/8 with the target, we double s and try again. Notice that
this process will converge to a weak approximator in log s stages, again with high
probability for appropriate choices for 4. [ ]

6.2. Polynomial Sample Size for Uniform k-TOP Learning

Our most general positive result for k-TOP is that for constant k, k-TOP is sample-
efficiently k-RFA learnable with respect to uniform. To obtain this result, we show
that any two noticeably different k-TOP functions will differ noticeably in at least
one Fourier coefficient of order k or less. This says that estimates of these low-
order Fourier coefficients provide the information necessary to closely approximate
a k-TOP function. Since for constant k these low-order Fourier coefficients can be
efficiently estimated from a uniform-distribution k-RFA oracle, k-TOP is sample-
efficiently k-RFA learnable with respect to uniform.

LEMMA 7 Let f : {0,1}™ — {=1,41} be a k-TOP of size s and let I, = {a €
{0,1}™ : |a| < k}. Also, let € be any positive constant, and let g : {0,1}" —
{=1,41} be such that for all a € It, |f(a) — g(a)| < €/s. Then Pr[f =g] >1—¢.

Proof: Because f is a k-TOP of size s, there exists a function F' = ZaeIk WeXq ON
the domain of f such that f = sign(F’), the weights w, of F are all integer-valued,
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and ), |we| < s. But by the definition of the Fourier transform we can also
write F = 3" F(a)x,. Thus we see that F(a) = w, for all |a| < k and F(a) = 0
for all |a| > k. Now applying the generalized Parseval’s identity we obtain the
following:

E[F||=E[f F]=) f(@F()= ) f(a)F(a).

a€ly

By our assumption about the relation between f and g we then have that

BIF) < Y g@Fa) + Y SIF(@)| < Y s(@)Fla) +c.

a€ly a€ly a€ly,

Now note that again applying Parseval we have

> gla)F(a) = §(a)F(a) = E[g- F).

acly

Thus E[|F|] — E[g - F] < e. Furthermore, since g is Boolean, every one of the terms
g(x)F(z) in E[g - F] has magnitude |F(z)|. This means that E[g - F] < E[|F|],
with equality achieved if and only if f = g. Furthermore, since |F(z)| > 1 for all =
(recall that the F'(a) are integers and by definition of the sign function F(z) # 0),
each z such that f(z) # g(x) adds at least 27" to the difference E[|F|] — E[g - F].
Therefore f and g can differ on at most an e fraction of the x’s. [ |

THEOREM 10 Let s be the size of a target k-TOP function and € and § the
standard PAC accuracy and confidence parameters, respectively. Then k-TOP
is learnable from a wuniform-distribution k-RFA oracle with sample complexity
O(n*¥ks?log(n/8)/€?) and in time at most singly exponential in n, s, and k.

Proof: By Chernoff, a sample of size O(ks?log(n/§)/€?) from the k-RFA oracle
is sufficient to estimate, with probability at least 1 — J/n*, each of the k-order or
less Fourier coefficients of f to within €/2s. By the preceding lemma, we then know
that any function which has low-order Fourier coefficients within €/2s of those we
have estimated will be an e-approximator to f. And there is at least one such
k-TOP—f itself—which satisfies this requirement.

One algorithm for finding this k-TOP then is to systematically construct various
k-TOP expressions in such a way that all possible k-TOP functions will eventually
be represented. This can be done by writing down lexicographically successive bit
strings and checking each to see if it represents a valid encoding (in, say, ASCII) of
a k-TOP. O(n2*?) is a crude upper bound on the number of strings we will write
down before encountering f. For each k-TOP constructed this way we can compute
its Fourier coefficients using the Fast Fourier Transform in time singly exponential
in n. We then compare the Fourier coefficients of each constructed function with
those previously estimated for f until a match is found. [ |
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7. Weak and Strong k-RFA Learning

In the PAC model of learning, weak learnability implies strong learnability [25]. Ex-
isting proofs for this fact are based on the notion of hypothesis boosting. Therefore,
an obvious approach to turning the weak learning result of the previous section into
a strong learning result is to apply boosting. However, all currently known boost-
ing algorithms work by running the weak learner multiple times, each time on a
distribution which is defined in part by the performance of earlier weak hypotheses
on instances. This presents a significant problem in the k-RFA model: to determine
the appropriate probability weight to assign to an instance, we need to know how
earlier hypotheses classify the instance, which requires that each hypothesis have
access to enough of the instance to perform the classification. But to the same
degree that attention is focused on portions of an instance in order to determine
the weight of the instance, attention is not available for performing the weak learn-
ing task at hand. This raises an interesting question: does an alternative form of
boosting exist that avoids this difficulty? We answer this question negatively.

THEOREM 11 k-TOP is weakly k-RFA learnable, but is not strongly k-RFA learn-
able for 1 <k <n—2. The weak learning is polynomial-time for constant k, while
the strong learning is information-theoretically impossible.

COROLLARY 1 Weak k-RFA learnability of a class does not imply strong k-RFA
learnability of the class.

Proof of Theorem 11: By Theorem 9 we know that k-TOP is weakly k-RFA
learnable, and in polynomial time for constant k. And we have also shown that it is
information theoretically impossible to strongly k-RFA learn k-DL for 1 < k < n—2.
All that remains to show is that k-DL is a subclass of k-TOP.

To see this, consider a target f with a k-DL representation (t1,b1),..., (¢, b.).
Note that this function can be written equivalently as the sign of the following sum
of the terms ¢;, which we view as functions with range {0,1} (and recall that we
are treating the b; as {—1, +1}-valued in this section):

i 2t
=1

To see that the sign of this sum is equivalent to f, notice that given an input =z,
each term t; that is not satisfied contributes nothing to the sum, since ¢;(z) = 0
for all such ¢;. But the first term ¢; which is satisfied by = will cause 2"~%b; to
be added to the sum. Since 2"~* > 377, 2777, the values of b;, j > i, have no
effect on the sum. Thus the value of b; determines the value of the function at z,
as desired.

Furthermore, it follows from the definition of the Fourier transform that each of
these k-terms ¢; can be written as a sum of k-parity functions, since the terms are
functions of at most k variables each and every k-variable Boolean function can be
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written as a linear combination of k-parities. Thus f can be written as the sign of
a weighted sum of k-parities, that is, as a k-TOP. [ ]

It should be noted that, while the proof above shows that k-DL is a subclass
of k-TOP, for a given k-DL representation of size r the construction above may
lead to a k-TOP with size exponential in k& and in r. Thus if r is, say, linearly
related to n, then the k-TOP representation constructed may be exponential-size
in n. On the other hand, time-efficient weak learning allows the learner to run in
time polynomial in the size of the function within the representation class being
learned. Thus, while the scenarios which are hard to learn strongly for k-TOP may
not be weakly learnable efficiently with respect to k-DL, they are weakly learnable
efficiently with respect to k-TOP.

The above theorem shows that boosting is not applicable in general within the
k-RFA model. However, boosting can be employed to good use under certain con-
ditions in RFA models. For example, we now use hypothesis boosting to argue that
for k constant, k-TOP functions can be e-approximated efficiently from a K-RFA
oracle, where K depends polynomially on the size of the target and logarithmically
on e~! but does not depend on n. This means that “small” (with respect to n) k-
TOP functions are efficiently learnable from an oracle which has focus of attention
which, while larger than k, is at least smaller than n.

THEOREM 12 Let s be the size of a target k-TOP function and € the accuracy re-
quired of a learning algorithm. Then k-TOP is K-RFA learnable for K = 2ks?In %,
Note that K does not depend on n. The learning algorithm runs in time O(nk“)
but is otherwise polynomial in the usual PAC parameters.

Proof: Asnoted earlier, thereis a O(nk+182)—time weak k-RFA learning algorithm
for k-TOP. In fact, the weak hypothesis produced by this learner can be made a
nearly (% — i)—approximator to the target k-TOP f. Now assume for the moment
that we have access to a PAC example oracle rather than a K-RFA oracle. Then
applying Freund’s boosting-by-majority algorithm [14, 15] to this weak learner will
produce an e-hypothesis for f consisting of a majority vote over approximately
252 ln% weak hypotheses. As each weak hypothesis is defined over only & bits of
the input, the algorithm actually only needs access to approximately 2ks> 1n% bits
of each instance. [ ]

8. Further Research

Being a refinement of the PAC learning model, the formulation of the RFA model
stimulates the need for new techniques and approaches in order to cope with new
learning problems. Some of the needed tools are developed in this paper, enabling
the study of the RFA learnability of interesting classes of boolean functions, such
as decision lists and k-TOPs. We believe that these tools, particularly the indistin-
guishability argument of Section 3.1, can be used further, both in the study of the
learnability of other classes and also for other RFA scenarios.
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Perhaps the most interesting open problem concerning this work is the following
problem, which significantly predates learning theory research but can be natu-
rally reformulated as an RFA problem. Consider the class of linearly-separable
half-spaces over {0,1}" (perceptrons). It is well-known that the first-order Fourier
coefficients of a perceptron (also called the Chow parameters of the perceptron)
uniquely determine the perceptron (see [10], or [9] for a more general result). Is it
possible to efficiently compute a good weights-based approximation of the percep-
tron from good approximations of these coeflicients?

This question can be naturally formulated as a 1-RFA learning problem, as fol-
lows. It can be shown that when learning from a 1-RFA oracle with respect to
the uniform distribution, we can obtain good estimates of the Chow parameters.
Also, based on our Fourier characterization of k-RFA learning (see Appendix), we
know that in fact these parameters capture all of the information available from the
1-RFA oracle. Thus, the above open question is equivalent to the following RFA
question: is the class of perceptrons efficiently and properly 1-RFA learnable?

Note that since perceptrons are efficiently (and properly) PAC learnable, it is
enough to have a good prediction rule which can be computed from approximations
of the Chow parameters, and succeeds for almost all the instances. Although it can
be shown that one of the Chow parameters is a weak approximator for the target
function [12], we currently do not know how to boost weak approximators in the
1-RFA model.

Another intersting question concerns weak and strong learnability in the k-RFA
model. We have shown that—in a class that contains functions of size exponentially
large in n—weak and strong learnability are not equivalent. Is there also a class of
functions all of size polynomial in n for which weak and strong k-RFA learnability
differ, or are these learning models equivalent in all such classes?

Appendix A

Fourier Characterization of k-RFA Learnability

We present here an alternative to the characterization of k-RFA learnability de-
veloped in Section 3. Specifically, we define k-Fourier equivalence of scenarios and
show that two scenarios are k-RFA equivalent precisely when they are k-Fourier
equivalent. The definition of k-RFA hardness can therefore be rephrased in terms
of k-Fourier equivalence rather than k-RFA equivalence, and thus Theorem 1 can
also be viewed in terms of k-Fourier equivalence. While we do not use this charac-
terization to obtain any learnability results in this paper, the connection of k-RFA
learnability with Fourier analysis, which has proved quite useful in learning theory,
seems potentially very useful.

We will assume in this section that f € {—1,+1}; this also means that we assume
similar small changes in the definitions of the previous section, such as that the
parameter b in the definition of pg(I, z,b) is in {—1,+1}.
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Definition 4. Two scenarios S1 = (f1,D1) and Sy = (fa, Do) are k-Fourier
equivalent if and only if for all a € {0,1}" such that |a| < k,

EI€D1[Xa(x)] = Em€D2[Xa(x)] and
Evep, [1(2) - Xa(®)] = Esep,[f2(2) - Xa(®)]-

THEOREM 13 Two scenarios S1 = (f1, D1) and Sz = (f2, D) are k-RFA equiva-
lent if and only if they are k-Fourier equivalent.

Proof: For a scenario S = (f, D) define E(S, k) to be the vector of expectations
{E.enlXa(@)], Even[f(x) - xa(x)] | |a] <k} and let P(S, k) be the vector of proba-
bilities {ps(I,x,b) | |I| = k}. We will show that the expectations in F(S, k) can be
computed given the probabilities in P(S, k) and vice versa. Given this, it follows
that if for two scenarios, S7 and Sa, ps, (I, z,b) = ps,(I,z,b) for all |I| =k, x, b
then the vectors of expectations F(S1, k) and E(Ss, k)—which are functions of the
ps,’s and pg,’s, respectively—must also be equal. That is, k-RFA equivalence of S;
and Sy implies k-Fourier equivalence. Conversely, given that P(S, k) can be com-
puted from E(S, k) then if E(S1,k) = E(Ss, k) it follows that P(S1, k) = P(S2,k),
or in other words, k-Fourier equivalence implies k-RFA equivalence. Thus we need
only show the claimed functional relationships between the probabilities in P(S, k)
and the expectations in F(S, k) to prove the theorem.

Let S = (f,D) be a scenario. Consider the expectation E,cp[f(2)xaq(2)] and
assume without loss of generality that a begins with 0 < j < k 1’s and ends with
n—j 0’s. Let # € {0,1}9, and let the notation Y. _ _ denote the sum over all

z € {0,1}™ such that the first j bits of z and z agree. Then

E.colfxa = 3. F(2)xa(2)D(2)
S % FEva(@)D(2)

= ZX{L Zf )D(Z)
:ZX“ (ZED ()1/\zja:]zlgj[f()l/\zjx]).

Note that the probabilities in the last line above can readily be computed from the
probabilities in P(S, k). Thus for all |a| < k, Ep[fxa] is a function of the pg’s in
P(S,k), and a similar argument shows that Ep[x,] is as well.

Now we show that the pg’s in P(S, k) are functions of the expectations in E(S, k);
this will also provide some insight into why we chose these expectations for our
definition of k-Fourier equivalence. We first want to rewrite pg(I,z,b) in another
form. Let f’ be the {0, 1}-valued equivalent of f, specifically the function such that
f(z) = (=1)f'® for all z. Define b’ similarly with respect to b. Now define the
{0, 1}-valued function g7 4 (2, f'(2)) to have value 1 if and only if f/(z) = b and
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for all ¢ in I, z; = x;. Then clearly E.cplgr v (2, f'(2))] = ps(,z,b) for every I,
x, and b.

Writing pg this way allows us to apply an observation of Blum et al. [7] to our
analysis. They showed that for any {0,1}-valued function f’ with corresponding
f € {-1,41} and any function g(z, f'(z)),

EzED[ Zg ao ze€D Xa + Zg al zeD ( )Xa(z)]a

where a € {0,1}". Now each of the g7 ;1 is a deterministic function, and therefore
the Fourier coefficients § for each of these functions are constants. Furthermore,
each g, depends on only k of the bits in z if |[I| = k. A standard Fourier
argument gives that for such g, §(a0) and §(al) will be zero for all |a| > k. Thus
for all |I| =k, z, and b, ps(I,z,b) = E.cplgr,2. (2, f/(2))] is a function of Ep[x,]
and Ep[fx.] for |a| < k. [ |

Finally, note that Ep[xa] = 3., xa(2)D(2) = 2"E.[D(2)xa(2)] = 2"D(a). Sim-
ilarly, Ep[fxa] = Z"E?(a) (here D is being used to represent both a probability
distribution and the real-valued function that returns the weight this distribution
assigns to each instance). In other words, the expected values characterizing k-
RFA learnability are actually the bounded k-order Fourier coefficients of the target
distribution and of the product of the target distribution and the target function.
This suggests that k-RFA learnability results for a function class (possibly with
respect to a restricted class of distributions) might be obtained by applying Fourier
analysis to the class.

Appendix B

Karnaugh diagrams with RFA hard scenario pairs

Tables B.1 and B.2 on the next page show Karnaugh diagrams with the RFA hard
scenario pairs we used for the proofs of Theorem 2 and 3, respectively.

The bold numbers are the function values of the input instances, addressed by
the rows and columns of the two dimensional tables. The smaller numbers in
parentheses represent the probability distributions. For clarity, we avoid fractions.
Hence, to get the real distribution these numbers should be divided by the factor
given in the titles of the diagrams.

Consider, for instance, in Table B.1 the diagram entitled f2(3) (6-P5”) | The numbers

0 () in the upper left corner mean that f2(3) (0,0,0) = 0 and that Dé3) (0,0,0) =1/6.
The numbers 1 () in the lower left corner mean that f2(3) (0,0,1) = 1 and that
D (0,0,1) = 0.
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Table B.1. Karnaugh-diagrams for the scenarios of Theorem 2.

£ 301

r1T2
00 01 11 10
oM 1M 10 1@

fl(:s) (6-D{¥)

122
z3| 00 01 11 10
0/0®@® @M oM oM@
110 1@ 10) 1)

fl(4) (12.0{")
r1T2
z3ze| 00 01 11 10
00 [0 oM @ o
01 |00® o) @) o)
11 |0 1@@) 10 1)
10 0@ oM o) o)

£(2) (3-D§?)

r1x2
00 01 11 10
10 1O oM 1M

f2(3> (6-D§>)

122
z3| 00 01 11 10
0lo@® @M O oM
1110 1) @) 1)

f2(4) (12.D§)

1T
x3za| 00 01 11 10

00 0@ oM @M o
01 oM o1 ) o)
11 (10 1@ o) 1)
10 loM o ) o)

Table B.2. Karnaugh-diagrams for the scenarios of Theorem 3.

f1<3) (10-D{)

xT1T2
z3| 00 01 11 10
0l1M 1@ 1M 1O
11o0M o) 1) @)

£0) (28-D%)
r1T2

x3zaxs | 00 01 11 10
000 1M 1M 1@ 1M
o0 |1 1M 132 1@
110 [1©) 1) 1) 7(0)
100 |1 11 11 1@
001 0@ @ @
o11 |1 1@ 1) 1M
111 0™ o) 1(1) o)
101 0@ O @) o)

f2(3) (10-D§?)

T1T2
z3| 00 01 11 10
01 1M 13 1O
110@ 1) @) @)

f2(5) (28-D§)

122
z3zaxs | 00 01 11 10

000 |1 1M 1M 1M
010 |1 1@ 11 1)
110 [1(©) 71(0) 1@Q) 7(0)
100 |1 11 11 1@

001 |0©@ @) @
o011 1M 1M 12 1@
111 02 11 o) o)
101 [0 o) o g2
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